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& ADSTRACT

The development of readily computabléjfgiggggies for differential
games with noise corrupted measurements heej?eea hampered by til.e so
called closure problem of stochastic differential gemes. The solutions
required either an infinite dimensional dynamic system or the determin-
ation at each time t of the error in the opponent's state estimate.

In this dissertation, solutions to differential games with noise
corrupted measurements haﬂggkgia obtained that are readily computable.

As a consequence of thé\stochastic aspects of such games, the
discussion Legégée& restricted to linear-quadratic differential games
which are analyzed using function space techniques.

The solution to a linear-quadratic game with perfect information is
obtained without the a priori assumption of a saddle-point soiution
and it is shown that the individual minimax and maximin solutions to
such a game result in a set of strategies that satisfy the saddle-
point condition, but with necessary and sufficient conditions that are
more stringent than previously obtained.

Following recent developments, the copcept of prior and deléyed
comitment strategies are introduced and the solutions obtained for a
game where one player has perfect staﬁé information and thie other
player receives noise corruptegxméésurements. A pursuit-evasion
example_of wuch a game 45 developed and by solving it the numerical
differences between the prior and delayed commitment solutions for this

ame are obtained.
j)The concept of delayed commitment games is then extended to
differential games where both players have noise corrupted state
measurements and solutions are obtained that are readily computable,
thus playing to rest the closure problem of stochastic differential

games.,
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ABSTRACT

The development of readily computable strategies for differential
games with noise corrupted measurements has been hampered by the so
called closure problem of stochastic differential games. The solutions
required either an infinite dimensional dynamic system or the determin-
ation at each time t of the error in the opponent's state estimate.

In this dissertation, solutions to differential games with noise
corrupted measurements have.been obtained that are readily computable.

As a consequence of the stochastic aspects of such games, the
discussion has been restricted to linear-quadratic differential games
which are analyzed using function space techniques.

The solution to a linear-quadratic game with perfect information is
obtained without the a priori assumption of a saddle-point solution
and it is shown that the individual minimax and maximin solutions to
such a game result in a set of strategies that satisfy the saddle-
point condition, but with necessary and sufficient conditions that are
more stringent than previously obtained.

Following recent developments, the concept of prior and delayed
commitment strategies are introduced and the solutions obtained for a
game where one player has perfect state information and the other
player receives noise corrupted measurements. A pursuit-evasion
example of such a game is developed and by solving it the numerical
differences between the prior and delayed commitment solutions for this
game are obtained.

The concept of delayed commitment games is then extended to
differential games where both players have noise corrupted state
measurements and solutions are obtained that are readily computable,
thus playing to rest the closure problem of stochastic differential

games.,
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CHAPTER 1

INTRODUCTION

The theory of games may be described as the mathematical theory
of decilton--nktn? by participants, or players, in a competitive
environment. In a typical problem each player has some control over
the outcome of a particular svent, or game, and the theory is con-
cerned with finding the optimal course of action, or strategy, taking
into sccount the possible actions of the opponents. Although some
game theoretic concepts can be traced over the past couple of centuries,
modern game theory dates from 1944 with the publication of the now
classical wori, "Theory of Games and Economic Beﬁavior.“ by von Neumann
and Morgenstern [1].

In differential games the ideas of game theory are applied to
dynamic conflict situations vhich can be described by differential
equations (continuous time) or difference equations (discrete time).
The dynamic system {s under control of intelligent adversaries each
seeking to optimize his own gain at the expense of that of his oppo-
nents, using all the available information to achieve his objective,
and having no a priori knowledge of what the opponentc'are going to do.
Differential geme theory was first defined and studied by Isaacs [2 - §)
in 1954 st the Rand Corporation end it was only upon the publication
of his book, "Differential Games" [ 6] in 1965, that the interest in
the subject became widespread.

Fundamental to the analysis of a game is the formulation of a

mathematical model, vhich includes the payoff, the allowable strategies
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and the available information sets upon which the players must base
their decisions. If the interest is on detail, information and fine
structure, the extensive form of & game is often used; while 1f the
stress is on strategies and payoffs, the strategic or normal form of

a game is usually employed.

A fundemental tenet of game theory is the Normalization
Principle of von Neumann, which says that given a game in extensive
form it can always be reduced to an equivalent game in normal form.
Although the number of possible strategies in the normal form becomes
rapidly enormous, the conceptual simplification makes it in practice
a much simpler problem for computing optimal strategies. As a conse-
quence most of the existing results in game theory are for games in
normal form. However, there is still a major concern vhether this
approach 1is philosophically sound. Aumann and Maschler [7] recently
re-examined the Normalization Principle and illustrate via a simple
example some of the pitfalls in the passage from the extensive to the
normal form of a game. Their results have immediate and serious con-
sequences in differential games with imperfect state information. In
effect, previously obtained results of games with imperfect information

are useful and reasonable only if the players are irrevocably commit-

ted to & strategy determined at the beginning of the game (the prior
commitment strategy). This severely limits their applicability, not
to mention that, in general, these strategies can only be realized by

infinite dimensional state estimstors [8)]) . This paper is therefore

concerned with determining the stratsgies (the delayed commitment

strategies) for differe “ial game~ with imperfect information where

........................
.................

....................................
...................................
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the players are not irrevocably committed to their prior commitment

solution. The class of gsmes are restricted to linear time varying

_! .differential games with noise corrupted weasurements and a quadratic
payoff function. The @llowable strategies are closed-loop, based at

each time t on all the available information up to that time and the

Ty X ¥ F.T.v.
.

final time T is fixed.

Chapter 2 presents the various concepts of game theory and a
brief review of those aspects of wodern optimal control theory that
are pertinent to the later chapters. The theoretical development
begins in Chapter 3, with a careful definition and analysis of a
linear-quadratic d_iff.erentinl game with perfect information,

Chapter .4 introduces the stochastic differentisl game and
illustrates the prior commitment and delayed commitment strategy via
a tutorisl example.

The prior commitment solution obtained by Behn and Ho [9 ] and
Rhodes and Luenberger [10)to a linear-quadratic differential game
vhere the minimizing player has perfect measurements and the maximiz-
ing player has noise corrupted messurements of the state is presented
in Chepter 5. The delayed commitment solution to this problem 1is
then obtained and the results are compared with those of the prior

commitment solution.

To {llustrate the results obtained in Chapter 5 we analyze a
pursuit-evasion example in Chapter 6 that also allows a finite
di{mensional solution using the prior commitment formulation. The
solutions to both formulatfons have besen obtained and their character-

{stics compared.




The delayed commitment formulation {s then extended, in Chapter
7, to the case vhere both players have noise corrupted measurements
and finite dimensional solutions, which are readily computable, are

obtained for both players.




CHAPTER 2

GAME THEORETIC CONCEPTS AND MATHEMATICAL BACKGROUND

As pointed out in the Introduction, the study of differential
games {s the dynamical equivalent of the problems studied in classical
game theory. Although many of the analytical methods for differential
games are actually extensions of techniques developed in optimal con-
trol theory, the important concepts in differential games come mainly
from general game theory.

The fundamental concepts of game theory are introduced in this
chapter with a dtlcull;on of two basic game models. A brief review of
those aspects of modern optimal coﬁtrol theory relevant to the sequel
is then presented, and a general mathematical representation of a
differential game formulated. The chapter is concluded with a dis-
cussion of the solution concepts of differential games.

2.1 GAME THEORETIC CONCEPTS

The success or failure of an analysis using game theory often
hinges upon the ability to adequately model a physical situation. The
vay in vhich a game model {s formulated depends upon our interests and
the type of analysis to be performed. The two basic descriptions of a
game of interest to us are:

1. the extensive form, and

2. tho strategic or normal form.

The cx;onntvn form of a game can be illustrated by means of a

diagram known as the game tree, shown in Pigure 2.1 for a simple two-
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person game. In this representation of a game, the choice of the first

L R
P
/N
@, -7 ©, 0) ©, -3) (6, -4)

Figure 2.1. The Extensive Porm of a Game

player amounts to selecting one of the two branches esanating from the
point Pl' After player 1 has made his choice, the second player has
to choose a branch at one of the two locations marked Pz. In our
simple game, after both players have selected a branch, the payoff is
given by the two mmbers at the end of the branches. 1In order to
indicate that both players move simultaneously we enclose both of the
aodes at 1'2 by a curve which i{ndicates an i{nformation set. If the
second player knows at the time he moves what the first player has
chosen, we would then draw a separate information set around each of
the nodes.

When engaged {n a particulsar geme, each player is faced with
the problem of how best to play the game in order to maximize or mini-
mize his expected payoff. A player's complete plam for playing a game
is called a strategy, of which there are several different types. A
w for player i is a rule for selecting a particular move
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at each of his information sets. A mixed strategy for player { 1is &
probability diltributio; over the set of all pure strategies. A
pehnvborll strategy for player 1 consists of a collection of probability
distributions, one each over the set of possible choices at each of his
information sets, A game for wvhich the sum of the payoff's at each
terminal node {is eéunl to zero is called a gero-sum game, all other
games are nonzero-sum. In 1912, Zermelo (see [1]) demonstrated the
existence of an optimal pure strategy for two-person zero-sum games
with perfect information, that i{s games in which all i{nformation sets
contain a single node. Kuhn [11)]extended this result to n-person
general-sum games with perfect i{nformation. Kuhn also showed the
existence of optimal behavioral strategies for games with perfect
recall. A'game:hls perfect recall if each player is sware, at each of
his moves, of precisely what moves he picked prior to it, but may not
know all the choices made by the other players. In 1928, von Neumann
showed the existence of optimal mixed strategies for any two-person
gero-sum game, which {s the well-known Minimax or Fundamental Theorem
of Game Theory.

Another of the fundamental tenets of game theory is the Normal-
ization Principle of von Neumann, which says that given a gan in
extensive form {t can always be reduced to an equivalent game in
pormal form involving only strategies and payoffs. The above example
of a game in extensive form reduces in its normal forwm to & 2 x 2
matrix game shownin Figure 2.2. In this form, the dynamic and infor-
mational aspects of the original problem have been suppressed into the

strategy vhich covers all contingencies of the players.




Player 2's Choice
( | _ | 2

Player 1 6, -7 0,0

1's Chotce 2 0, -3 6, -4

Figure 2.2. The Normal Form of & Game

When a game i{s constrained by a system that evolves over time
(or some other parameter) it is called a dynamic game. If the dynamic
system representation takes the form of a difference equation, the
game is known as a discrete differential or multistage game. The
designation differential game is reserved for a dynamic geme vhere the
dynamic system representation is in the form of a differential equation.
We will have more to say sbout the differential game representation
in Section 2.3. At this stage it should be noted that implied in the
formulation of a game is the assumption that the players "agree' on
the structure of the model as well as what is important to bothplayers
as expressed by the payoff or payoff functionm.

In this paper we will be mainly concerned with two-person
differential games with perfect, as well as with imperfect information.
They represent an extansion of optimal control theory, in that the
optimal control problem csn be considered as a one-sided game. That
ie a game with only one control imput driving a dynamical system in-
stead of two opposing controls as in two-person differential games.

In terms of the matrix game of Pigure 2.2, a Sm-planr. geme would
consist of simply a single row or column. The development in this

paper will be from the optimal control systes point of view and we
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will therefore first discuss the general optimal control problem in
the following section.
2.2 REVIEW OF OHML CONTROL THEORY

In this section we will present a brief discussion of those
aspects of modern optimal control theory that are pertinent to our
discussion of diff.erentul gamas.

We will first formulate a general deterministic optimal control
problem and discuss the basic methods of solution. We will then modify
this problem to a stochastic optimal control problem, after which atten-
tion is focussed on the linear-quadratic-Gaussian problem, PFor this
problem we discuss the Certainty Equivalence Principle or Separation
Theorem, including the notions of controllability, observability and
optimal estimation.

In the general optimal control problem one wishes to deteraine

the p-component control vector u(t) that minimizes the given cost

functional
T
- J(tx,w) = BGM,D + [ Fax(0),u@), ) (2.1)
to
subject to the constraints
dx
ac " x = £(x(t),u(t), t) 5 x(t) = x (2.2)

The n-component vector x is the state vector and Equation (2.2) {s
known as the dynamic system equation. The n-vector function f, as
well as the scalar functions B and F are assumed to be sufficiently
smooth in the sense that all the necessary partial derivatives exist.

In addition, there may be magnitude or inequality constraints on the




state and control variables, as well as restrictions on the terminal
state. The terminal time T may be variable or fixed; here it is
assumed fixed for simplicity.

The optimal control problem is then to find that control function
u(t) (1f it exists) defined on the interval |to.‘l‘l that satisfies all
the problea conltr;tnu and is optimal in the sense that it simultan-
eously minimizes the cost function. In other words, we wish to find
the allowable control function u®(:), such that for any control u(.)
belonging to the allowable control function set U, there holds for all
te l t o.'rl

J(tooxoo“.) < J(tonxoo“) (2.3)

Basically, four methods of approach are available to solve the optimal
control problem; they are,

1. The classical calculus of variations approach, which leads
to the Euler-Lagrange equations as the necessary conditions
for the control to be optimal.

2. The Maximum Principle of Pontryagin approach, which pro-
vides the necessary conditions for optimality. It {is
usually the most direct method for problems involving
magnitude constraints,

3. The dynamic programming approach, which leads to the
Hamilton-Jacobi equations. Although the Hamilton-Jacobi
equation cannot be easily solved in general, u(t) is
determined as a function of x(t), 6r {n other words, we

find a feedback control law which is highly desirable.

~
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4. '!hc functional analysis approach. Its appeal stems primar-
ily from {ts geometric character and is most useful for
problems formulated on a fixed time interval.

In this paper we will almost exclusively use the functional
analysis approach to obtain the solution to optimal control and differ-
ential game problems.

Frequently, it i{s required to obtain on-line feedback or closed
loop control of the dynsmic system; i.e., we seek a solution of the
form u(t) = u(x(t),t). BHowever, restricting the allowable controls to
belong to the set U : wu(t) = u(x(t),t) greatly complicates the deter-
mination of a solution. In fact, of the fouf basic approaches listed
above, only the dynamic programming approach directly provides a
closed loop solution. Otherwise, the dependence of the comtrol u(t)
on x(t) can be explicitly {dentified only for a linear dynamic system
with a quadratic cost functional.

If the system dynamics (Equation (2.2)) are perturbed by ran-
dom disturbances, and/or if the initial conditions are random, and/or
if the only available information about the state x(t) is availabdble
through noise corrupted measurements of the state variables, the
deterministic optimal control problem becomes a stochastic optimal
control problem. In Fhil case, the criterion of optimality needs to
be modified to that of minimizing the expected value of the cost
functional.

Thus, by postulating that the only available {nformation about

the state of the system can be cbtained by measurements of the form

g(t) = h(x(t),w(t),t) 2.4)

11
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vhere the output vector z(t) is of dimension mg<n, the function h(-,-)
is sufficiently smooth in each argument and w(t) {s & random noise
process, it follows that we are dealing with a stochastic control pro-
blem. The conversion to & stochastic optimal control problem is com-
pleted by -odifyttlng the optimality criterion to that of minimizing the
expected value of the cost fuuctlo;al; f.e.,

I = & [3aem, D +! Px(e),u(e), 0)d | @.5)

°

Furthermore, it is necessary to seek a closed-loop solution, thus the

allowable controls are of the form

u(t) = u(z(e),t). (2.6)
where
Z(t) = l(z(l).o) 3 leto,t)| 2.7)

i.e., the control u at time t depends on the past and present
values of the measurement history Z(t).

The class of problems for which a closed-form analytical solu-
tion to the stochastic optimal control problem has been found is the
case of a linear system, a quadratic cost functional and white szero-
mean Gaussian noise additively corrupting the measurements of the
system output. For this special case, the optimal closed-loop solution
is given by the important Certaint uivalence ncipls or Separation
Theorea.

To revievw the Separation Theorem, we will consider the linear

continuous time system described by the vector differential equation

12
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&% ot e p)x(®) - G(OUCE) 5 x() =, (2.8

to vhich are aval_lable measuremsnts of the form
g(t) = H(t)x(t) + w(t) (2.9

vhere x(t) is an n-dimensional state vector, u(t) is a p-dimensional
control vector, z(t) is the output vector of dimension m<n and the
matrices F(t), G(t) and H(t) have the appropriate dimension.

The initici state x(to) is assumed a Gaussian random variable
with mean E lx(tq)' =X, and cov lx(to).x(to)l - ’o' The additive

noise w(t) 1is .au\-ed wvhite and Gaussian with zero mean, cov [ v(t),v(f)l

= W(t)$ (t -7) and independent of the initial condition x(to).

Consider also the quadratic cost functional

T
I =12 8| + ] W(e)u e | (2.10)
t

where the final time T is fixed and finite, and the superscript T
denotes transposition.

Let the set U of allowable control fuanctions be
U : u(t) = u(Z(),t) (2.11)

wvhere

Z(t) = | (z(s),8) ; -t(to._t) ’ (2.12)

then the objective 18 to find thst u®(t) € U such that

13
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£ IJ(u'(t))l_§ E |:(u(c>)| (2.13)

.for all te [to.l"l .
The solution tc this problem may be stated in three parts;
1. The optimal closed-loop solution to the correspending
deterministic optimal control problem; i.e., for x(to)
known exactly, H(t) = I the ident{ty matrix and w(t) = 0,

may be written as

u®(t) = G (t)S(t)x(t) (2.14)

vhere the n x n sysmetric matrix S(t) may be precomputed
from the matrix Riccati equation.
§ = - S(OF(L) - FI(IS(L) + S(OIG(OIGT (B)S(E)  (2.15)

with the terminal condition

8§(T) =1 (2.16)

If, in additiom, (F,G) constitutes & controllable pair;

i1.e., 1f
T
[ e@.ve®6c¥© o, rae >0 2.17)
t
(-]

vhere & (t,t o) 1{s the system state transition matrix which

aust satisfy the relation

14
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ao(t.to)

8¢

= F(t) Q(t,to) R
(2.18)
e(t,t)=1

then S$(t) exists and {s bounded for all t £ T.

LEn Lo

2. The optimal closed loop solution to the stochastic optimal
m ' control problem is '

. T A

u®(t) = G, (£)S(t)X(t) 2.19)

where

Q) =[xy |z | (2.20)

with Z(t) given by Equstion (2.7), that s, X(t) is the

expected value of x(t) given the measurements z(t) up to
time t. The matrix Gl'r(t)s (t) is the same as that of
Equation (2.14) and is unchanged by the conversion of the
deterministic optimal control problem to the stochastic
optimal control problem.

3. The best estimate Q(t) of the state x(t) given the measure-

ments Z(t) is given by
3 e 20)2() - Ge)u(e) + PRI W (e
[:(:) - n(z)Q(c)l : Q(co) - ;‘o (2.21)

where the n X n symmetric matrix satisfies the matrix

ilcutt equation
P = P()P(L) + P()FE(E) - P(O)ET ()W L(e)H(IP(E)

P(to) - P° (2.22)

13
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If, in sddition, (F,H) consitutes an observable pair;

i.e., 1f

T
f or (t.to)ﬂr(t)n(t) & (t,to)dt >0 (2.23)

%o

then i(t) exists and is bounded for all te Ito,rl .

The two parts (1) and (2) illustrate the Certainty Equivalence
Principle, vhich emphasizes the fact that, for linear systems with
quadratic cost functions and subjected to additive vhite Gaussian
noise {nputs, the optimel feedback solution treats the conditional
mean-state estimate, Q(t), as the true state. The Separation Theorem
expresses the fact that this problem can be solved vis two separate
problems; optimal estimation and control.

2.3 DIFFERENTIAL GAME FORMULATION

A tvo person differentisl game differs from the optimal control
problem in that another set of control variables is available for
manipulation. Bach set of control variables, ul(t) and uz(t). can be
thought of as being under control of an intelligent player or con-
troller, and each player thus has control over only some of the
relevant variables that decide the outcome of the game. The players
are opponents, and if the objective of the one controlling ul(t) is
to minimize the cost or payoff of the game, the objective of the one
controlling uz(t) is to maximize 1it.

In general, the following situation arises for a two-person
sero-sum game: For { = 1, 2 player { wishes to select his Py compo-
nent control vector ut(t) that optimises

16




T
J(‘o"‘o‘“l’“z)~' B(x(T),T) + f F(x(t),u, (t),u,(t),t)dt (2.24)
to

subject to the constrainte

:—’t‘- =% = £x(0),u,(6),u,(0),8) 5 x(t) = x (2.25)
and
u €U ; u,Ed, (2.26)

As for the optimal control problem there may be inequality constraints
on the state and control variables. To ensure termination of the game,
the terminal time T {s given explicitly in the above game.

The control varisbles u, and u, are called the strategies of
player 1 and player 2 respectively, and are restricted to certain sets
of admissible strategies Ul and U,, vhich depend, in general, on the
specific problem to be solved. Equations (2.24) through (2.26) can be
thought of as defining the rules of the game. The progress of the
game is determined by the n-first order differential eﬁuntlons (2.25).
Play starts at time to in the state x, and terminates at time t = T,
The game is zero-sum because there is a single payoff and the game {s
called strictly competitive. Furthermore, the game is one of perfect
information since both players know the state x(t) at any time
te Ito,'l' l. In the case of a two-person nongero-sum game we mAy

encounter a payoff function such as

17
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(2.27)

T
J (5%, ;5 upsu,) = B (x(T),T) +:/ Pi(x(t),ul(t).uz(t).t)dt
-]

for 1 =1, 2.

slnce the players are assumed to have several strategies svail-
able for play, the central problem of game theory is the determination
bf which one to play.
2.4 SOLUTION CONCEPTS

In optimal control theory, the solutions are the allowable
control functions that optimize the criterion function and there is
no doubt about the meaning of a correct solution. In game theory,
however, the presence of the opposing control introduces a dramatic
new ordgr of complication not usually found in the one-sided optimal
control problem. When each player determines his optimal strategy,
he must also take into account his opponent's actions toward the
opposite end, the opponent's similar wariness of the other player's
actions, and so forth. The basic difficulties are thus related to
the available information sets and the rationales used by esch player.
In nonzero-sum games one can be faced with & great variety of relevant
solution concepts involving coalitions, threats, enforceability of
agreements, bargaining, etc. In this paper we will explore two
solution concepts sssociated with nonzero-sum games, namely, Nash
equilibrium and {nd{vidual minimax solutions. In two-person zero-sum

differential games, the problem of multiple solution concepts does

not arise.
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2.4.1 Equilibrium Solutions

If game theory is to recommend any specific pair of strategies
for a two-person game, then each strategy must be the best possible
against the other strategy in the pair; {.e., the pair must be an
equilibrium polnt;. Othervise, a knowledgeable player will know what
the theory recommends for the other player, and so will want to select
a strategy that is better for him.

1f we identify the players by

Player 1; minimizing player vith_ control Y
Player 2; maximizing player with control u,

then a strategy pair (ul',uz') is in equilibrium if

Jl(nl’,n2 ) £ Jl.(ul.u2 ) ~ uIGUI (2.28)

and

Jz(ul’,uz) < Jz(ul',uz') o uzeuz 2.29)

In other words, the strategies are in equilibri{um {f no player has any
positive reason for changing his strategy assuming that the other
player is not going to change his strategy. In game theory such an
equilibrium solution is known as a Nash equilibrium solutfon. Thus,
1f a player knows that the other player is cosmitted to his equilibrium
strategy, then he has reason to play the strategy which will give such
an equilibrium pair and the game {s stable in the sense that no player
can unilaterally improve his payoff by changing his strategy.

Por two-person gero-sua games, the Nash equilibrium solution

leads to a saddle pofint on the cost surface i{n the control space and

19

PO U O T G OGNy




LI AR ST sy s i AR N sl AN "‘
VeV E LTRSS T, I A L e N . R . A N .

*J(“l.’"z) < J(ul',uz') < J(ul,uz') (2.30)
In this case equilibrium pairs are both {nterchangeable and equivalent, '
in the sense that, {f (ui,uz‘) and (ul',u2°) are equilibrium pairs,

then so are (ui,uz‘) and (ul',uz') and moreover

J(u}oul) = J@,°,0,°) = J(uj,u,°) = J(@,°,u;) (2.31)

This well-known result of equivalence and interchangeability [12] for
gero-sum gsmes with a uddle-poitnt solution makes the question of
uniqueness of the admissible strategies irrelevant. For, 1if two
saddle-points exist, their values are equivalent, and the strategies
which give those saddle-points could be played interchangeably without
changing the value of the criterion.

Unfortunately, not every game has equilibrium strategy pairs.
In general, {f a game has no equilibrium strategy pairs, we usually
see the players trying to outguess each other, keeping their strategies
secret. This suggests, and i{s indeed true, that for finite games
with complete information, equilibrium strategies do exist.
2.4.2 Minimax and Maximin Solutions

Most practical conflict situations are not games of perfect
information since ignorance of an opponent's ultimate chotce of con-
trol {s generally an essential element of a conflict situation. In
that case each player must approach the design of his owm eontgol

prepared to limit the adverse cost resulting from his opponent's




i

3

s Bk ; AL

ultimate choice of control, This means that the minimizing player,
player 1, must select u; 8o as to minimize the maximum possible cost,
.regardless of whether the maximizing player, player 2, ultimately
selects u, such as to yield this cost.

Hence, from player 1l's point of view, {f he selects an arbitrary

control “1’ then, regardless of the choice of player 2, he i{s assured

of the cost being at most

J‘l(nl,uz‘) - :x Jl(ul,uz) (2.32)
’ 2

Since player 1 is the minimizing player, he will select uy such that

this choice minimizes the maximum cost, that is,

Jl(u1°,u2') = min lnx 3 (ul.uz)l (2.33)
1 1%

Thus, the minimax solution {s the control ul‘. Player 1 does not care
what strategy his opponent ultimately selects, he is that much ahead

if his opponent selects any strategy other than “2.' since the result-

ing cost would be less than, or at best, equal to Jl(ul',uz'):
® [ ] [
JI(“I ,uz) < J‘_(u1 ' ) (2.34)

Hence, Jl(“l. ,\.lz.) is the loss ceiling or the uc;urlt! lavel for
player 1.

From the point of view of player 2, {f he selects an arbitrary
control Yy, then regardless of the control of player 1, he {s assurad

of the cost being at least
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.Jz(u'l*.uz) - ata 3,(s,,u,) (2.35)
1

and since he is the maximizing player, he will select u, such that

this choice maxisiizes the minimum cost; i.e.,

Jz(ul*,uz*) - max [.m Jz(ul,uz)l (2.36)
b I B |

Thus, the maximin solution is the control uz*. Player 2 also does
not care what strategy his opponent ultimately selects, since if his
opponent selects any strategy other than “l*’ the resulting payoff to

*
player 2, the maximizing player, will be greater than Jz(u1 ,uz*):
* % *
Jz(ul ¥y ) € chul,uz ) 2.37)

Hence, Jz(ul*,uz*) 1s the gain floor or security level for player 2.
The controls ul' and “2*’ derived on the basis of no a priori
knowledge of each opponent's ultimate choice, are again stable solu-
tions to the game. Assume, for example, that during & differential
game, player 2 has calculated his security level by which he deter-
mined the control set ﬁl*(t).uz*(t) and subsequently found out
that player 1 uses the strategy u1°(t). Then, player 2 will be able
to find another strategy uz'(t) which will give a payoff greater
than chul*.uz*). .!ou'vcr. as soon as playsr 2 employs a strategy

other than uz*(t). there exists a strategy ul'(t) that together with

e -+ ONSNASENGE 54 SRS
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ui(t) gives a payoff such that Jz(ui, ui) < Jz(u;,uz*). HRence if
player 1 decides to secretly switch to ui(t). player 2 has to accept
a smaller payoff than {f he had stayed with uz*(t) fa the first place.
Thus, unless player 2 has reason to believe that player 1 is irrevoca-
bli'counited t6 a strategy other than ul*(t), there 18 no reason at
all to play a strategy other than uz*(t);

If a player reveals his strategy to his opponent the best he
can hope for is the loss ceiling or the gain floor depending on whether
the revealing player {s player 1 or 2. For a two-person zero-sum game
tf it happens that “1* = ul' and “2* - uz', the minimax and maximin
solutions have located the familiar saddle point solution and there is
no point to secrecy.

2.4.3 Open-Loop Versus Closed-Loop Control

The fact that a player plays a maximin or a minimax strategy
does not imply that he cannot take advantage of any non-optimal play
of his opponent. In fact, the interim action of his opponent during
the actual play of a differential game can not be ignored, and what is
required are controls that depend explicitly on the state x(t) of the
game.

The indifference between open-loop and closed-loop control, as
in the deterministic one-sided control problem, has its counterpart in
differential games only in the determination of a prior{ strategies,
in which case, “1(t) - ul(x(to).t). During the actual play of the
game it is mandatory that closed-loop control is used and “1(t) -
ut(x(t),t). Starr [13) has shown that for nonzero-sum differential

games the open- and closed-loop equilibrium formulations give entirely
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CHAPTRR 3

THE LINEAR-QUADRATIC PERFECT INFORMATION GAME

In this chapter we develop the solution to a differential game
with perfect ltateftnfornntton wvhich i{s of fundamental importance to
the delayed commitment strategy solutions of stochastic differential
games discussed in later chapters.

The currently available control literature shows that a closed-
loop solution for a stochastic optimal control problem seems to be
available in closed-form only in the specisl case of a linear system,
a quadratic cost f‘netionnl and white Gaussian noise additively cor-

rupting the system. It therefore seems unlikely that a closed-form

solution for a stochastic di{fferential game problem will be available
unless we assume the same or more stringent restrictions for such a
game problem. Since stochastic differential games will become our

main i{nterest, we will restrict our discussion in this chapter to a

linear system with a quadratic payoff functional. Contrary to pre-

viously obtained results {14) , [15) , however, our solution will not

.be conditioned by the a prior{ assumption of a saddle point solution.
The linear-quadratic differential game representation used in

this paper {s formulated and the solution i{s obtained using function

SATLAGE P I

space methods. Thus, the analysis {s made in Hi{lbert space and
follows the method of approach of Porter in [16]) . It {s then shown
that the optimal strategies can be obtained from a matrix Riccati

equation and can be computed prior to the actual game.
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3.1 LINEAR-QUADRATIC GAME FORMULATION

Consider the linear continuous-time system governed by the

.vector differential equation

@3.1)

s dx'

£'(e) = G = PUOX' () - GI(E)u](8) + Gi(Iuy(e);  x'(e) = x)
where the n vector x'(t) is the system state; the control vectors ui (t)
and ui(t) are of dimension p and g, respectively; and the matrices
r'(c), Gi (t) and Gi (t) have the appropriate dimensions., Consider also
a quadratic cost (or payoff) functional

T
J(ul,uz) - 1/2' x'r(‘r)qax'('r) + f uiT(t)Ql(t)ui(t)dt

to

T
- u{r(t)Qz(t)ui (t)dt ‘ 3.2)

to

where the matrices Ql.(t)' Qz(t) and QS are symmetric positive definite;
and the final time T {s fixed and finite.

The psyoff functional can be written more efficiently by use of
the following transformations. Since Ql (t), Q2 (t) and Q3 are

positive definite and symmetric, they may be factored as

q = ¢/,  1e1,2,3 )

Then by the transformations

26




v e aad o e e oo

x'(t) — Q;sz(t)

s — o2@u©

u3© — g 2mu,©

The system equation becomes

1/2 1/2 1/2 -1/2

F'(e)Q,  x(6) - Q' “6j(e)Q) /A (e)u (b)

1/

+ o3 60105 2@y 0 x(e) = /%y

- x
°

I1f we now define the new matrices

8 1/2

re) € o)/%r (g,

1/2 -1/2
6, ®) & %61 (¢, 2 0)

1/2 1/2

6, () & q;%65(1q; % ()

the system equation and payoff functional are respectively
(331)

k= 8o p@)x(®) - 6 ()u () + 6, (D, (6); x(t) = x,
T (3.8)
I (yu,) = 1/2 {xT (Mx(D + ] Iulr(t)ul(t) . uz"(:)uz(e)la

to
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In view of the possibility of making the above transformations, we will
consider Equation (3.7) as the defining system equation and Equation
(3.8) as the payoff functional.

The above formulation involves a single dynamic system instead
of the two separate systems of the pursuit-evasion problem as in [14]) .
However, this single system includes the pursuit-evasion problem as a
special case, since the individual state vectors of the pursuit-evasion

problem can be combined into a single state vector and the two oppon-

ents considered to constitute a single system.

L Player 1, the minimizing player, attempts to minimize the payoff
*f,ff_ functional or criterion; i.e., he minimizes the term xr('r)x('r) in

b lqu&tloln (3.8) as well as his own expended emigy, vhile maximizing the
| energy expended by player 2. Player 2, the maximizing player, attempts

to maximize the same criterion, Thus, the game {s zero-sum and aince

each player is assumed to have perfect knowledge of the system state
it i{s more accurately & zero-sum game with perfect {nformation.
'rho class of admissible strategies are defined as those Ul and

II2 wvhich give rise to the controls

v

1 u = ul(t,x(t))

3.9
v

2 u, = uz(t.x(t))

that are bounded and that are continuous almost everywhere for t gt < T.

It 1s well known that, for arbitrary t = to' LI ul(t) and uz(t),

the solution to Equation (3.7) may be written as

.
’
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t
x(t) =@ (e dxe) - [ # (6,16, (M, (DT

to

t

+ f #(£,7)G, (D)u, (1)dT (3.10)

¢

vhere O(t,to) is the state transition matrix, {.es. it satisfies the

relation

pe (t,c)

= F()® (t,to)
pt

(3.11)
@ (to’to) =X

As mentioned previously we will analyze the above problem
using functional analysis techniques, although any other of the four
basic methods of approach mentioned in Section 2.2 could have been
used,

To reformulate the differenti{al game in a suitable Hilbert
space consider the controls Y, (-) and “2(') to be elements of the
Hilbert spaces Hl - szlto.'r] and 112 - 2‘ [to,'rl respectively, where
the space Lzrlto,‘rl is the space of r - vector functions which are

defined and (Lebesgue - ) square integrable over the interval lto.'rl.

The inner product on this space is defined as




T
<8, y> = [ zr(t)y(t)dt (3.12)

| - °
R

=

:

and the norm 1is defined in terms of the inner product as

T
. ’ W2 <vy> = [ e (3.13)

i . to

Hence the two fntegrals in Equation (3.10) may be considered as linear
operations on u, and u, respectively, and we can represent the dynamic

system (3.7) in terms of linear transformations on suitable Hilbert

spaces as

x(t) = ®(E)xy = (L)) (€) + (T,u,)(6) (3.16)

where the linear operator 1‘1 : szlt o.l‘l — E° {¢ defined by

t
) © = [ @06 (Nu, (T (3.15)

o

with a similar definition for 'rz and E° {s the n-d{mensional Euclidean

space. The terminal state can then be written ae

Y
»

A ITTIT

x(T) = @ (T)x - (T,u,)(T) + “z"z) (T) (3.16)

Dropping the argument T whensver t = T, the first term of the payoff

functional (3.8) may then be written as

:’(‘r)x(‘r) -<Ox° - "'1"1 + 'z“z""o - ’1"1 + ‘rzuz) @G.1)

QAR P DR
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The other terms of the payoff functional may similarly be expressad
as inner products and we can write the payoff functional as
E J("l’“z) = 1/2 l( & x, - 'rlul + 'rzuz,.xo - Tlul + 'l'zuz >
-‘ + < ul,ul) - <\l2.“2 > (3.18)
‘ wvhich now includes the dynam{c system since it has been used to
develop this equation.

" 3.2  MINIMAX SOLUTION
- For the minimax solution we have to find the "2. (t) that
maximizes (3.18) for arbitrary v, (t) and then thst ul‘(t) that
mini{mizes this maximum cost.

Forming téhe functional derivative of J (“1'“2) with respect to

u, and setting this derivative equal to zero, we obtain

9 J(u,,u,)
1Y » R * .
™ u, + T, #x, - T, Tu, + T, T,u, = 0 (3.20)

(vhere the asterisk denotes the adjoint operaton or

7- -

* * * '
u =T, ' ‘!2 T)9 + T, Tu, (3.19)

v g ’

A A

The above equation requires u, to be in the range of ‘1'2*, thus we

fay write

LAl

*
u, =T, lz. (3.21)




i:_' Making this change of variable results in
~ * * * * %
: T, A, T, #x, - T, e+ (3.22)
; which will hold whenever
| A, =#x_-T,u, +T.7.°%
2 "9% - Ty T T, A, 3.23)
or
A, = @-1T,.N ! (ox - Tu) (3.24)
2 272 &x, - Ty .

Thus, whenever the indicated inverse exists, the candidate extremal

control uz' is

R N
u, ':2 (1 T2T2 ) (.xo 'rlul) (3.25)

VithT : L, lt o,r]-‘z“ defined as in Equation (3.15) by

t

(Tu) (t) = f ® (t,7)G(Nu(r)dT (3.26)

to

the inner product Tu in E® yyth an arbitrary vector ¢ €E" {s

t
<L, Tud = [t. f ® (¢, 7G(Nu(r)dT
t
[«

t

- j[f- O(t.‘r)G('r)U(r)] dr

t
o

(Cont'd)
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; - :

*

= «<T ¢t,u> 3.27)
. ) Hence the adjoint dperatorl ‘1'1* and '1‘2* are identified by the

X equations

| @ Ep© =6 e me e, (3.28)
- and

@, 2@ =6, @ e m0¢t, (3.29)

Thus, Equation (3.25) can be written as

T
u, @) = 68T, |1 - f 1,036, ()6, e T(r,0)ae |
" ty
] T
i e, )x, - [ ® (T,£)6, (t)u, (t)de (3.30)
e
L 8%
e Por uz'(t) to be indeed locally maximizing y o 2 < 0 must be
he u
- 2

satisfied. Differentiating Equation (3.19) with respect to u, gives

. *
ks - - -1 4+71,°1, <0 (3.31)
E
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thus requiring that

T

1- [ #7(t,7)6," ()6, (1) & (t,1)d7 >0, £ StLT (3.32)
to

In addition, no conjugate points may exist on the extremal path, which

is equivalent to requiring that (I - 'rz'rz*) >0

or

T

I- j ®(,16,(MG, (M eT(t,HAT>0, t gtgT (3.33)
to '

which assures the existence of the inverse in Equation (3.30) so uz' (t)
exists over the entire interval [to,‘r ]. 1If Equation (3.33) is not

satisfied; {.e., 1f there exists a time t' < T for wvhich the matrix

T
1- [eene,me me e ner (3.34)
t
(]

becomes singular, then the control u2° (t) 1is no longer maximizing for
t>¢t .
s

Assuming Equation (3.32) and thus Equation (3.33) to hold, the

maximizing control uz' (t) for arbitrary ul(t) i{s given by Equation
(3.25) or

° - * - * 'l -
' e T, (I-T,T,) (&x, - T u)

- rz*nz(o x_ - T,u,) (3.35)
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vhers

D, = - zr;‘")" ©.36)

Substituting "2. into (3.18) gives the following payots functional

I@y) = -}koxo - T, +

*
1212 D2 (¢ xo - rl“l”.xo - rl"l

' * *
+ 1'2‘1'2 Dz(Q x - !‘lul))*(ul,ul)-('l‘z Dz(gxo- rlul).rz D2

(. :o - 11“1)>} (3.37)

which s{mpl{fies after some work to
I - %{(on = T, (ex -'rlu1)>+<ul.u1>l (3.38)

and {t {g required to determine the ul‘(t) that minimizes this payoff.

Forming the functional derivative of J(“l) vith respect to u,

and geteing thig derivative equsl to zero

gives
dJ(v,) *
- - -
—;T;;_- “1 ‘1‘1 Dz(.xo rlul) =0 .39
or
--1" 7 * 3.40
% 1729 + T D) ex, (.40)

Wt ehy, ¢quation requires u

1 €© be fn the range of rx*. thus we may
Wity

. *
s S Ay (3.41)
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and after making this change of variables we obtain
*a, =1, 172, 41T
T A =TT 1D e G.42)

which will hold vhenever
'11 = - l)z'l'l'l'1 Al + ng o (3.43)

or

. * -1 #*)-1 *y <1
Al-ll-f(l T,T, ) T,T, I .[I"’zz | ox,
-lx-r'r +'r'rl] (3.44)
Thus, the minimax control for player 1 {s
cop® * *, -1
u® =T, lz - T, - T,T, l ox, .
-1, 3.4
L Dex, (3.45)
where
* *) -1
De [1 +1,1," - 1,1, I (3.46)

The indicated inverse exists {f (I - ‘1'2 2 ) > 0 as required for u '(t)
Substituting “1. "tnto Equation (3.35) gives as the corresponding

optimal control for player 2.

c o a* *
“2 Tz Dz(’ 3° - 'l'l'l'l D.Ro)

- T,"pex, (3.47)
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Evaluation of (3.18), using (3.45) and (3.47) yields the minimax
\ cost from time t, to completion at time T as
o -1 * *).1 <
{OVU RS R LN LEE X AR X A Il TR (3.48) |
. - With Tl’ 1'-2 and 1'1*, 12* defined by equations (3.15) and (3.28), :
(3.29) respectively, the minimax solution is from equations (3.45) and
= a.47).
1 T
u,"(t) = 6, () 8T (T,¢) [z + [ ea.ne, me, ) & r,nar
to '
T
- [eanc,mc, e anar[Tem e )xie,)  G.49)
%o
and
T
g 5t =, T, [T+ [ en6 (M6, (1 #Tar, T
i .
B - f oct.f)cz(r)cz‘c-r)9"(1.1)41]";0.:9:(:3 (3.50)
¥ ‘o
Q
:' The minimax cost to complete the process from the arbitrary
’ time t, is from equation (3.48)
N ’ T
: Iyt = {aT @) #T e (14 [ a6, (06 (n) 8T, nar
to
‘ | (Cont 'd)
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T
- ] 0(‘1'.7)62(1’)621(1') o', narf? o(T,t )x(t )} (3.51)

to

The necessary and sufficient condition for the existence of
the minimax loluttén is from Equation (3.34)

T

I- f 0(‘1‘.1)62(1')d;(1) .T(T.‘l’)d‘l’>0, t STS T (3.52)

%o

3.3 MAXIMIN SOLUTION

For the maximin solution it 1s required to find the ult(t)

that minimizes (3.17) for arbitrary uz(t) and then that uz*(t) that

mpaximizes this minimum cost.
Porming the functional deri{vative of J (“1’“2)' i.e., Equation

(3.18), with respect to uy and setting this derivative equal to zero

we obtain ’
8J ‘“1"’2) * * * ©-33)
———.;'2-—-' - ul-‘rl .x°+‘rl rlul-tl tzuz-o
or
* * *
up =T, ex, - Ty Ty, + T) Tu, (3.54)

*
This equation requires uy to be in the range of ‘l'l s thus we may

write

*®
ﬂl - T‘ 11 O'SS)

. - : -t o lhon Bt deatch
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Making this change of variable results in

* * . * * *

which wi{ll hold vhenaver

*
A= @x, - TTA 4T, (3.57)
or
. * -1
Ay C+TT ) (0x, + T,u,) (3.58)

The indicated inverse always exists for 0<t<T, because the term
added to I 1s at least positive semidefinite. Thus, there are no
conjugate point difficulties associated with the maximin solution,

2
Yurthermore, -'L-‘zl- =1+ ’1'1*1‘1 > 0, thus the control “l* i»
’ul

globally minimizing and is given by

* * * -1

(8% +T,0,) (3.59)
or
u," = 1,"0, (0x, + 1,8, (3.60)
vhere
D> @41, G.61)
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*
Substituting u, into (3.18) gives as payoff functional

l - * : *
@) =3 |K8%, - TT) Dy (8x, + Tpuy) + Tpuy. 8%, - Ty D,

(on + ‘.l'zuz) + 'l'zuz> + (Tl*nl(.xo + ‘l'zuz), Il'bl
(@x, +T,u)> - Cuyu,> (3.62)

which reduces after some algebra to

1
J(uz) =2 (080 + Tzuz.bl(oxo + rzu2)> - £ “2""2> (3.63)
and it {s required to determine that “2* which maximizes this payoff.

Proceeding as before,

8J
auz

*
- -y, + 1'2 Dl(gxo + Tzuz) -0 (3.64)

or

* *
u, = 'tz Dl'rzuz + '1'2 Dl.xo (3.65)

This equation requires u, to be in the range of ‘1‘2*, thus we may

write

*
uz - 1'2 AZ (3.66)
and on making this change of variable, we have

* * * .
T,A =T, D T,T, A, + T, D) ox, (3.67)
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vhich will hold whenever

‘ : A, = DL A, 4D #x, (3.68)
or

I ) A, "ll @+ rlrl*)qrz'rz* I a4 rl'rl*)’loxo.

. -

Hence the maximin control for player 2 is

. * * *] -1
uw'e1, lx-»'rl'r1 -rz'rz] ox.

*
- "I.'2 Doxo (3.70)
Substituting uzttnto Equation (3.59) gives
* * * *
ul - '1'1 Dl.:o + ‘1'1 0112'1'2 D.xo
-1 G.71)
1 on .

Evaluation of (3.17), using (3.70) and (3.71) yields the

maximin cost from time to to completion at time T as,
* 1 * *] -1
2l = p<ox, [Tt -1 e ¢.72)

Vith T,, T, and rl". -rz' defined by Equatfons (3.15) and (3.28), (3.29)

respectively, the maximin solution s from equations (3.70) and (3.71)
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: o '©=cT@e’ae [1+ [ ean0 e m ¥ ner

! . =

o T

- f ’(T-T)Gz(f)Gzr(f) Qr(‘r.‘r)dr] e Tt )x (3.73)

- -
. ) °
.

T
o 5, () = 6,T@®) o,0) 1+ [ e.nc (n6,TmeTa,ner

o T '

:;‘:_';:{ - _[ oa.f)cz(f)czr(f) Or(t.r)d‘r] -1 (T, e )x . @3.74)
n t

o °

.

The maximin cost to complete the process from the arbitrary
time t, is from Equation (3.72).

T
Jepup =TTy et |1+ [ ene me, (e a,ner

%o

T

- [ea.ne, (06, (n .Ta,,)“]'l ocT,t)x(t )} (3.75)

%o

while the necessary and suffici{ent condition for the existence of the

saximin solution i{s from Equation (3.69)

T T
14 [e@nc 6, (neTaner - [ #a.n6,(1G, (e ,1eT > 0

to to

t,stgT .76)
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3.4 DISCUSSION

Comparison of the minimax solution (Equations (3.49) through

. (3.52) with the maximin solution (Equations (3.73) through (3.76)) shows

that the lolutiot.:q are identical. Hence, we have obtained the saddle

point solution to the two-person zero-sum game, {.e.,
J(u,%hu,) € J(w,%,u,°) € J(uy,u,°%) 3.77)

If we define the symmetric matrices H(‘r,to), M, ('r.:o) and
M, (T,t ) as

ucrlto) =14+ Hla.to) - %aoto)

T
wee) = [ emne meime aner .78

o

T
waa,e) = [ & (1,16, (TG, (1) #TT,7)ar

%o

we can vwrite the optimal solutions as

0,0 () = 6T () T, oM (e ) e ), (3.79)

v, (0) = 6,70y #Ter,em r e ) #CTLe )X, 3.80)

and 1t s obvious that the optimal controls are proportional to
& (T,¢t o)x o which {e the terminal miss {f both controllers remain
inactive and the system is allowed to run free. The time varying

matrices reflect the control capabilities of both players.
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From optimal control theory (Section 2.2), we know that the

necessary and sufficient condition for the system to be controllable

u on [:o.r] by controller 1 with u,* ()0

T

b T, T

o m e = [ oo @67 ofa.eae >0 (3.81)
L ot

for all t {n lto.Tl , while the necessary and sufficient condition for

the systea to be controllable on lto.rl by controller 2 with

' ul'(°) w0 i»

T
were) = [ eec,©c @ e @0 > 0 (3.82)

o

and we can define ulcr,to) and uzcr.eo) as the reduced controllability
matrices of player 1 and player 2 respectively.

The conditions for the existence of H’lcr,to) obtained in the
maximin solution provides additional insight {nto the problem l‘£ we
consider the limiting case of weighing the importance of terminal

uiss against control effort. In this case the payoff functional {s

vritten as
T (3.83)
I(uyu,) = % , 22T myx(r) + j [ul"(c)ul(z) - uzr(t)nz(t)l dt}
: ‘,

vhere the scalar & permits the required weighting, and the resulting

ucr.:o) 1{s then

» s 'I F,'r,l L
.-..'.E‘A’.ﬂu et

X(r,e ) = -.‘,— M (T,e) - M (T (3.84)

&




---------------

In the limiting case, 1i.e., .2 =& {n the sense that

'0. 1f x(T) = 0

2
2 & mxm) - (3.85)

o 1fx(T)¢0
the existence of M(T,t o) i{s guaranteed {f

“:“"o) e“la"o) - uz('r.to) >0 (3.86)

“:“"o) is known as the relative controllability matrix,[14 ) the fact
that it i{s positive definite indicates that the msinimizing player,
player 1 is 'more controllable” than the maximizing player, player 2.

The {nitial time t, is completely arbitrary, wvhile the assump-
tion of perfect {nformation guarantees that x(t) is available for any
t. Hence the open-loop controls can be applied continuously and

instantaneously to yield optimal feedback control laws by replacing

to by t.
If we define
T
s¢) 0T,y 1+ [ ear,n6 (M6 e, nar
t
T
- [ sane,me,TmeTan| T ean .80

t

then we can write the optimal feedback controls for the linear-

quadratic two-person differential game as

&3
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ul.(t) - 6,7 ()8 (e)x(e) (3.88)
u,® (t) = cz"(e)s(:)x(:) (3.89)

and the optimal cost to complete the game from the arbitrary time t is
o . o 1 T
J(ul Uy )= 2% (e)S(t)x(t) (3.90)

while the necessary and sufficient condition for existence of the
solution is from the maximizing step of the minimax solution

T

1- [00.1’)’62(1)%1(1) e, mar>0; ¢ €7T¢ T (3.91)
. .

This necessary and sufficient condition is more stringent than
that of Ho, Bryson and Baron [14) and Rhodes and Luenberger [10 ] who
claim

T

I+ / Q(T,-r)cl(r)clr(f) Or(r,-r)d'r
t

.
- [eaneme T meTaner>0; tsrs T 0.92)
t

as the necessary and sufficient solution. The difference occurs

because their mathematics 1s conditioned by thes a priori assumption of

a8 saddle point solution.

With 8(t) defined as in Bquation (3.87) we can determine the

e e
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controls ul’ (t) and uz" (t) from the matrix Riccati equation, developed

below. Taking the derivative of §(t) we obtain

i) = o ¢Ta,one) er,e) + T, -2 D) e @)

+ o7 (‘r,t)b(t) ®(T,t) (3.93)
vhere
T
@ =1+ [ ee.ne 6 m e a,ner
t
T
-/ m.nczcr)o’a.r)u]" (3.94)
t
But

2o @) - [—;’; * <:.r>]’ - -[O‘I(c.n—,’—t #(t.T) o'l(c,r)]’
--Fo ¢ ae; (3.95)

TR e il B CURRR Y RO 10 (3.96)

and
B D(e) = - D) =71 ()D(e) = D) [# 1,16, )6, T (IO T, )

- #,06,®6, 87,0 b .97

Subst{tuting Equations (3.95) through (3.97) into Equation (3.93) we

obtain the matrix Riccati equation

P AT Y Sy v




.......................................

(3.98)
5() = = B - F (IS +8) [6,(0)6, () - 6,(t)6,"®) ] 5()

with boundary condition

8(T) = 1 (3.99)

Note that the solution to the above equation can be obtained prior to
the actual game. A summary of the optimal strategies for the linear-
quadratic differentisl game with perfect information {s presented in

Table 3.1.
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TABLE 3.1

SUMMARY OF OPTIMAL DETERMINISTIC STRATEGIES

x = P(t)x(t) - 6, (8)u, (8) + Gy (Ouy(e);  x(e ) = =

o
Player 1: Perfect measurements
Player 2: PErf;ct measurements
T
1].7 T ., T
sedlT@mem + [ [u,5 0@ - 0 0u,m] a
¢ .
°

ul'(t) - Gl(t)S(t)X(t)_

uz'(t) - Gz(t)S(t)x(t)

S = - SP(t) - FE(L)S +§ [cl(c)cl"(t) - cz(c)c;z’(t)] $; SCT) =1
I(4,u,°) = -;- xT (£)S (£)x (t)

Necessary and sufficient conditions

T

1- [o(-r.ncz(r)cz"(r)o"a,r)af > 0
t
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INTRODUCTION TO STOCRASTIC DIFPFERENTIAL
GAMES AND DELAYED COMMITMENT STRATEGIES

Yor the differential game considered so far, we have assumed
that we could make no:uelen measurenents of the system state vector
and use those msasurements in the system mechanization, f.e., we
assumed a differential game with perfect information.

In many practical situstions, hinevcr. the players have access
only to noisy measurements, resulting in a game with imperfect infor-
mation. Willman {8] has given a formal solution to this class of
games, but, as an spparent consequence of this {mperfect information,
attempts to express these strategies in terms of fin{te-dimensional
estimate vectors have been unsuccessful. A version of this game in
vhich constraints are placed on the player's state estimators has
been solved by Rhodes and Luenberger [17] .

A subclass of games with imperfect information where one of the
player's measurements are corrupted by white noise and the other
player has perfect measurements was solved in 1968 by Behn and Ho (9]
for a pursuit-evasion game and in 1969 by Rhodes and Luenberger [10]
for a more general game,

Harsanyi [18) , in .1967/1968. used & chance move as a mathemat-
fcal device in the analysis of static games with imperfect {nformation
to reformulate the game into s game with perfect information, called
the "Bayes-equivalent” of the original game. The players eater the

game, 60 to speak, after chance has made its choice. In part II
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{19] , Harsanyi recognizes that this time gap is crucial when coop-

erative games with imperfect information are being played and shows

that the normal form of a Bayesian game is,in many cases, s highly

unsatisfactory representation of the game situation. He argued that
the Bayesian games sust be i{nterpreted as games with delayed commfit-
sent,

In 1972, Aumann and Maschler [7) pointed out that the d{ffi-
culties due to the time gap exist even {f the players are playing a
tvo-person zero-sum game with imperfect i{nformation and Ho [21]
extended their results to stochastic two-person games,

In this chapter, we will define the differential game problem
in which the two opposing players have access only to noise-corrupted
output measurements and introduce the delayed commitment strategies
via a simple example of a one-stage stochastic difference game,

4.1 GAMES WITH IHfERFECT STATE INFORMATION

As pointed out in Chapter 2, if the output measurements are
corrupted by a random process we are faced with a stochastic problem.
In order for a stochastic game to be mathematically tractable, the
measurement noise must be describable by a finite set of sufficient
statistics. In practice this means a linear system with quadratic
cost and Gaussian noises corrupting the output measurements. The
sufficient statistice are then the mean and covariance of the process.

Consider the linear system described by the vector differential

equation

k(e) = 3 = P(O)x() - 6, ()u (6) + G(E)uy(e)  (b.1)




to which player 1, controlling ul(t), has available measurements of

the form

:l(t) - lll(t)x(t) + v (c), %.2)

vhile player 2, controlling u, (t) has available the measurements

£, (t) = Iz(t)x(t) + vz(t) 4.3)

The vector x(t) € E® 15 the system state, u, (t) eln

and u, (t)e Epz are
the control vectors, zl(t) €2l and z, (t) € E"2 are the measurement

vectors. The matrices F(t), Gl(t) and Gz (t) have the appropriate

dimensions, vhile the matrices nl(t) and nz(t) are ‘espectively,
m,xnandm, xn vith =, m, <0, The noise processes |"l(t) and

Ivz(t)' are vhite Gsussian, with properties

! cov 'vl(t).‘ vl(f)] = W () 8( -T)
= cov [wy), wn| = W@ - “.5)
. eov "'1(‘)' "z(")l = 0

The {nitial state *(to) 1s & Gaussian random vector, uncorrelated for

all t vith w, (t) and v, (t), and having & mean of ;o and a covariance
cov l!(to), x(to) l- P, (4.6)

The cost functional or payoff to the game is quadratic:

. . %.7
I(8ys 9p) = % ) l %% (T)x (T) + ! ulr(t)nl(t)dt - ! uzr(t)uz(t)dtl
o (-]
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wvhere the final time T {s fixed and the expectation is taken over
all the underlying n_ndo- quantities (x(t,), v (), vz(t)). The
. simplified form of the payoff functionsl has been assumed, which can
be odtained from a more general forsulation using the transformation
equations (3.4) of Chapter 3.

Let us now tufn to the admissible strategies. leat zl(:),
1 =1, 2 be the output function measured by player 1 over the interval

[to, t), f.e.,
2,() = | @ )0 : 0e le,.0) | .8)

the class of admissible strategies are then restricted to those Ul

and Uz wvhich give rise to the feedback control laws

01 vy -ul(zl(t),t)

Uz :u, = uz(zz(t),t) “%.9

Thus, the adaissible strategies can only depend on the past accumu-
lat{ve observation data. BEquation (4.9) can be expressed equivalently

for i= 1, 2 as
“1“) - 31(2.:%); 'tl - ‘lt(l),lt Ito.t ll (%4.10)

A
vhere § (- , ) 1is viewed as a mapping from R xc- |t°.‘rl — RP
end C [to,tl is the class of continuous functions defined on Ito.'r]

with values in l‘.

.............
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The mapping y, (¢, ) for { =1, 2 satisfies a Lipschitz con-

dition:
| 3(t.f) - 3(t.t) Nsaelie-gll, ¢£,g5¢ c_':o.'rl (4.11)

for l}l te lto.rl where @ is some constant. The Lipschitz condition is
{mposed for technical reasons; it gives & sufficient condition for the
existence of (x(t).zl(t)), (x(t),zz(t)) in (4.1) through (4.3).

Vhen each controller is allowed efther perfect measurements or
noise-corrupted measurements , a total of four problems may be formu-
lated, of which, due to symmetry, thr.ee are basically di{fferent.

Pigure 4.1 shows the problea classification u;d {ndicates those discussed
in this paper, together with some references to previous papers which

examined solutions to those problems.

Player 2 Perfect Noisy
Player 1 Measurements Measurements
Closed-loop Chapters 5, 6
Pexfect Cane
Measurements Chapter 3
s, 151 {9, 10)
Noiey Chapter 7
Measurements ls, 17, 22)

Pigure 4.1 Problem Classification



As shown in Chapter 3, the necessary and sufficient condition
for a solution 2f the two person serc-sum game with perfect information
.{s more stringent tlun. previously determined. The solutions obtained
s0 far to the games with noisy measurements are valid only under
restricted circumstances. To discuss those restrictions and to develop
the genersl solutioh concept to games with measuresent noise we will
aov turn to our tutorial example.

4.2 A JUTORIAL EXAMPLE

The concept of delayed commitment strategies to stochastic
differential games can best be explained, {t {s felt, by using a very
simple ons stage stochastic difference game example similar to that
presented by Bo [21] . The notation MN(l, o) Indicates s normal pro-
cess with a mean and a covariance equal to 1 and O respectively.

Consider the scalar dynamic systea
B, =%, - uz-:l-ﬁul -, %.12)

vln.rc x - x~N(0,0), and v, and u, are t\u coatrols of player 1 and

2 respectively.

Consider also the performance criterion

3 --hl:, -xteu?- z..z’l %.13)

which player 1 attempts to mini{aise and player 2 to maximise. Player 1

receives 00 measurements, wvhile player 2 1{s given the measurements

lz'- zéw,, w,~NO, 1) h.14)
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vhere x and v, are independent. The class of adaissible strategies

for player 1 s
Ul ty, - kl s constant %.1%)
and for player 2 '1-..

Uz : u, = kzzz . (4.16)

We can obtain the prior commitment strategy by substituting (4.12) into

(4.13) vhich gives

l 2 - 2 - -
J(ul,uz) -2 B 2!.:1 u, + qul quz 2“1“2 “%.17)
Then for
“1 - kl
“%.18)
u, = k.2
2 22
ve can write
1l 2 2 2 . .
I k) = 3 B |zk1 - ke, 4 2kyx - 2kyxe, - 2K Koz,
1y 2 .42 )
-1 |zk1 - k20 + 1) - 2,0 %.19)

Both the minimax and maximin solutions to this simple problea give

u'e-73 : 1 %2 (4.20)
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Thus, ul’. uz' form a saddle point pair and

o2

J(ul',u2°) Y X)) “.21)

and it has been au@ed that “l.’ uz' form the solution to the differen-
tial game.

However, consider the situation facing player 2 during the
actual play of the game, after he has received the information z, and

before anyone has acted. Player 2 now faces the payoff

1l 2 2
Jz(ul,uz) -2 4 2u1 - u, + qul - quz 2u1u2 | z, I (4.22)
and the secure strategy of this maximizing player is obtained by
finding the maximin solution of Equation (4.22) subject to equations
%.12),(4.15) and (4.16).

Por arbitrary u, the minimizing strategy v, obtained from the

partial derivative of Iy with respect to v, is

. y - % ©, - ) “%.23)
vhere
Qz-llx l:zl %.24)

Substituting this result into Equatfion (4.22) gives

3,(,) = 1; e |- % uzz - xu, - xf, +'§-sz |.2| 4.25)

3
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and the maximizing dz 1s found to be
o
i *o.1p ..1_
(] U TTIRTTITTRT R (4.26)
- snd thus
-
&
N * 2 A 2 o
F | Y P3N "3 T0+1 B2 %.27)
g
The resulting maximin solution is thus
* 2
o = -2e|x]s,| (4.28)
u*.--l—'llxlzl 4.29)
2 3 2 :

Since z, can be regarded as part of the prior information and thus is

a known number, u, and u, satisfy the restriction on the class of

1

admissible strategies.

An analogous argument shows that the mini{max stratagies are the
* *

sane as the maximin strategies. Hence uy and u, are not just the

maximin solution, but they are a saddle point pair for Jz, i.e.,

* * & *
Jz(u1 ,uz) < Jz(ul Y, ) € Jz(ul,\l2 ) 4.30)
and the resulting payoff is
o2
’ * % 1 2
Jo(u, ,u, ) = - = z (%.31)
2V1 2 (o + 1)2 2
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On the other hand, if player 1 uses strategy ul* and player 2

uses uz'. then

2
* . 13 ¢ 2
J,(u, ,u, ) = - = z
2\ Y2 7 ool 2’

4%.32)

* & *
Obviously, .!2(\11 Uy )2 Jz(u1 ,uzo) and we conclude that for all

possible values of the observation z,, the strategy u * 1s actually

2

[}
2 .
The reason for this phenomena as first pointed out by Harsanyi

a safer strategy for player 2 than u

{19) and then by Aumann and Machler [7 ] 1s inherent in the Normaliza-
tion Principle of game theory. In the extensive form of the game a
player makes his decision as to what control to use after receiving
his measurements, while in the normal form of the game, this decision
is effectively moved to before receiving those measurements.

In many games, the passage from the extensive to the normal
form does not affect the course of action of the players and the two
situations are formally equivalent, But, in our gaers, with imperfect
information this passage changes the outlook of player 2. Indeed,
if player 2 decides on a strategy before receiving the measurement
£y he i{s justified in using the expected value of z, in his payoff
function. However, when player 2 {s inforwed, before making his
decision, that a specific z, has been selected, there {s no longer
any justification for using the expected value of z,. Thus, after
the information is received, we really have a non gero-sum game

facing the two players, with (4.17) the payoff for player 1 and (4.22)

the payoff for player 2. It is this change in outlook that {»
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fgoored in the passage from the extensive to the normal form of the
game.

In terms of Harsanyi's discussion the players "enter"™ the game
after the “chance" (the measurement noise) has made {ts choice.
During the play of a stochastic differential (difference) game at time
t or 'k greater than tor the players effectively also "enter" the
game having received the actual measurement (noise corrupted) up to
that time,

Returning to our example, 1f player 2 has reason to believe
that player 1 i{s committed to the strategy ul' = 0, then on solving

the resulting one sided optimal control problem from player 2's point

of view,
max J(u‘u)-J(Ou)-lEI-uz-ZRu |z| %.33)
u 241 *2 2Y72 2 2 2 V72 *
2
gives
4
..- B o sEE———
u' = -tlx]e, |- 5577, %.34)

-z __
o+ 1

to the resulting one sided optimal control problem from player l's

Similarly, 1f player 2 {is committed to “2. - - 7Y the solution

point of view {s

o2
ain z 2

Y

2 + 2 xul

I (u,,u,°) = +2u?.
169109 2 |1 0+ )2

o o
+2 T 2T Y
(Cont 'd)
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'-z' v, + o+l 4.35)

which gives

l . N “1. 0

* u2'| is a Nash equilibrium solution to

Thus, the strategy pair '“1
ﬁhe non zero - sum game. Hence {f player 2 knows a prior{ that
player 1 will use u1°. or {f he can convince player 1 that he is
using uz'. then his optimal strategy will be uz'. However, it {is
vell known that Nash equilibrium strategies do not possess any minimax
or guaranteed value properties in non gero - sum gemes, and without

o

this a prior{ knowledge there is no reason at all to play u, wvhen

uz‘r {s safer snd availadle.

. ey 25
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CHAPTER 5

THE PERFECT/NOISY DIFFERENTIAL GAME

In this chapter we discuss the case vhere one of the players
has perfect state information while the other player has only noisy
measurements of the l%tlt.. A physical example of such a problem would
be the pursuit-evasion problem of a homing missile and an evading air-
craft vhere the missile has considerable ground support via an up- and
downlink to determine the state of the evader.

The problem is basically the same as that solved by Behn and
Ho (9] as a pursuit-evasion differential game and extended by Rhodes
and Luenberger {10] to more general diffcrenttaljmn. Their solutions,
however, are prtox; commitment sclutions and assume that conditions are
such that the player with perfect state information can deduce exactly,
at each time t, the error in his opponent's state estimate.

In Section 1, of this chapter, we formulate the stochastic pro-
blem and discuss the prior commitment solution, The delayed commitment
strategies for player 1 and player 2 are then obtained in Section 2
using function space techniques. It is then shown that the results
can be {nterpreted in terms of matrix differential equations of the
Riccati type.

The delayed commitment strategy optimality criteria are dis-
cussed {n Section 3 and compared with those of the prior commitment
strategy. The chapter {s then concluded with n sumary and discussion
of the results obtained for the perfect/noise corrupted two-person

d1fferential game. .

62

------ e Y ~ N - . N o N "
B U B IP ERL. NRIY ke Y _t e PR PR AP U S W [ — L R e a i o’ 4 . -~




5.1 PROBLEM FORMULATION AND PRIOR COMMITMENT SOLUTION
The problem formulation differs only slightly from that pre-

. sented in Chapter &4, in that only one player has noise corrupted

measurements of the state vector, x(t), during the game and an estimate
of the i{nitial condition, wvhile the other player has perfect state
information durﬁg‘ the entire game. Thus, the linear continuous time

dynamic system {s described by the vector differential equation

dx

x = X e PO - 6 (D (1) + G, (E)uy(2) .1

and the quadratic cost functionsl is
. T (5.2)
J(u ,u)) = 3 B {x’cr)xcr) + j lulr(t)ul(t) - uz"(:)uz(z)] d:,

t

]

where the dimensions for the vectors and matrices are as discussed in
Section 4.1 and the final time T is fixed.
Player 1 has perfect measurements of the state x(t), while the

measurements available to player 2 are of the form
zz(t) - llz(t)x(t) + vz(t) (5.3)

where the matrix nz(t) ie =, xn with =, € n. The noise v, (t) 1

assumed white, zero-mean and Gaussisn with covariance

cov v, (&) wy (1) | = Wy ) 8 -7 (5.4)
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The initial state x(tc) for player 2 {s assumed to be a
Gsussian random vector uncorrelated with v, (t) for all time te l t o.‘rl

.! .and having & mean ;o and covariance
cov [x(to).:(to)] -P (5.5)

The initial state for player 1 is x(t o) -x.

Let Z, (t) be the output function measured by player 2 over the

interval [t ,t), i.e.,
Z,(t) = |2, (80,0) & se [2,0)) (5.6)

The class of adniui;ble strategies are restricted to those Ul and Uz

which give rise to feedback control laws, i.e.,

k lJl tu, - ul(x(t),t)
Uz tu, = uz(zz(t),t)
b Let the best linear estimate of the system state x(t) given the

messured output function zz(t) be denoted Qz(t). if.e.,

£ Q EGY 2, () (5.8)

QXA I IO R

s e
(3

The corresponding estimation error ‘;2 (t) is then

Aol
i » aes
» e F

%, () @) - £, (5.9)
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Since the random variables are normally distributed, the best linear
estimate will also be the overall optimal estimate.

Previous pgior commitment solutions require that conditions are
such that the plaior with perfect state information (player 1) can
deduce exactly at each time te'lto,T] the error in his opponent's
state estimate, =é(t), or that this information is provided by some
'mystical third party."

In the more general case, where player 1 cannot calculate nor
is provided with ;z(t), or equivalently Qz(t) from which §z(t) = x(t)
- Qé(t). he will have to build a filter from which he generates an
estimate of his opponent's estimate, denoted QZI(t). Obviously,
Qél(t), based on noisy data, will deviate from Qz(t) and player 2
should be able to take advantage of this error in player l's estimate
of the estimate of player 2, leading effectively to an additional
term in player 2's control. However, such an addit{onal correction
term is based on noisy data and the opponent, player 1, should be
able to take advantage of this error. However, the correction of
player 1, in turn, {s based on noisy data and player 2 should be
able....cccoeee &

What we have just encountered, if the general problem is
solved from the prior commitment point of view, is known as the
closure problem in stochastic games. It expresses the fact that an
infinite number of terms seem to be required in the optimal
strategies of each of ﬁhe two players.

Yor the differential game defined by Equations (5.1) through

(5.7), and under the assumption that player 1 can determine exactly
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the error in player 2's estimate, ;é(t), the prior commitment optimal

*
strategies obtained by Behn and Ho and Rhodes and Luenberger are

uy e = ¢, [s(t)x(t) + u(e)i(z)]

(5.10)
uj(t) = czr(:)s(:)ﬁ(:)

vhere the symmetric gain matrix S(t) satisfies the matrix Riccati

equation
§ = -SF(t) - (1S +5 [6,0)6,7(®) - 6,6, ()] s (5.11)
with boundary condit;on
S(T) = 1 (5.12)

and the symuetric gain matrix N(t) satisfies the differential equation

N = WEE) - F(ON - 8 [¢,(06,T® - 6,()6,” )] s
+ (5 + M6, (6)G,T(E) (5 + N) + NP(OH, " (£)H, (¢) (5.13)
+ 8,7 0w, (0B, (PN

with boundary condition

N(T) = O (5.14)

The symmetric error covariance matrix P(t) satisfies

In order to avoid confusion with the state estimate {n the delayed
commitament solution discussed below, the subscripts have been

omitted from the state estimates and their errors in the prior
comaitment game.
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P e AP + PAT() - mz"(c)uz'l(c)nz(:)r (5.15)
with boundary condition

P(t,) = cov [x(t).x(e )] = B, (5.16)
vhere the matrix A(t) is defined by

ACt) = F(t) - cl(t)cl"(c) IS(t) + n(t)l (5.17)

Note that Equations (5.15) and (5.13) are coupled, so that the
solution of this problem involves a nonlinear two-point boundary value
problem given by these squations with boundary conditions (5.14) and
(5.16). The solutions of the matrix Riccati type equations, {i.e.,
Equations (5.11) through (5.17) can be obtained off-line, prior to the
actual game.

The corresponding optimal expected cost from time t {s

()0 = -;- xT(£)8 (t)x(t) + % T R @FEE)

T

J @@, 0w, )8, (s)P(s)ds (s.18)
t

1l
'.’ztf

wvhere tr Il is the trace operator.
5.2 DELAYED COMMI T STRATREGIES
During the actual play of the game at time t, and from the

point of viev of player 1, the payoff functional becomes
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. (s.19)

3 (e )=t x lx"cr)zcr) + [ [T e, - o, Tmu,m] arl x(:)l
: t

vhere

xe) 2 |x@, o = o [ege0) | (5.20)

and wvhile, as pointed out in Chapter 4, the strategy pair (ui,ui)
preseriiad in Section 5.1 still retains its equilibrium property, they
are no longer secure strategies. In' order for player 1 to determine
his secure strategy, he has to find the saddle-point solution to

Equation (5.19) subject to

x = P(t)x(t) - G, (£)u, () + G, ()u,y(8); x(t ) = x_ (5.21)

Player 2 is faced with the problem of extracting useful infor-
mation from his past measurements on which to base his control. BHow-
ever, player 2's perfect estimate {s Qz(t) = x(t) and for the purpose
of calculating player 1's secure strategy we assume that the allowable
strategy for player 2, in addition to being zz(t) msasurable, is also

X(t) measurable. In other words, we want to determine that u,’€¢ U

1 1
and uz‘e 01 x Uz vhich are optimal in the sense that for all te ':o.'rl

I (u%0,) £ J (0%, S "1(“1'“2.) (5.23)
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vhere

U, ¢ u, =u, (x(t),t)
1 11 (5.24)

Uz : “2 - “z(zz(t)!t)
The delayed commitment game from player 1's point of view s

then the same as that solved {n Section (3.2) for which we obtained the

saddle-point solution

v, (t) = cl"(:)s (t)x(t) (5.25)

vith the corresponding optimal response for player 2
u,* (t) = G, (£)S (£)x(¢) (5.26)

vhere S(t) is the solution to Equation (5.11),1i.e.,
) 5.27)
§=-8P(t) - P()S +8 |G1“)clr“) - 6,(6)6,T(®) | S; S(T) =1

The resulting security payoff for player 1, 1.e., his loss

cei{}ng at arbitrary time t is from Equation (3.90)
3,(,%50,%) = -;-x(‘r)S(t)x(t) (5.28)

Wote that in real life when player 2 does not have a perfect estimate of
the state x(t), the payoff to player 1 can only be better, i.e., smaller
than his loss ceiling.

If we aow consider the game from the point of view of player 2,

his payoff during the actual play of the game at time t {s :
(5.29

T
epup et el mam + [0 mu 0 - wlmeym) anze
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and his secure strategy is obtained by finding the saddle-point

solution to Equation (5.29) subject to

x = F(E)X(E) - Gy (D)uy (E) + G, (D)u (&) ; =(t) ==, (5.30)

Yor the purpéu of determining the secure strategy of player 2,
we assume that the 3llovnb1e strategy for player 1 in addition to
being X(t) measurable {s also zz (t) measurable. Thus, player 2 wants
to determine that ul’f U, xU, and uz’e v, which are optimal in the

sense that for all te¢ |t°.'1'l .

L ] ® ® [

Jz(u! ,uz) < .!2(111 Yy )< Jz(\ll‘,u2 ) (5.31)
vhere U, and U, are defined by Equation (5.24).

In terms of the Hilbert space notation developed in Chapter 3

the payoff functional becomes
1
30y = 3 B 1<ex, - Ty + Tyuy, 8%, - Ty + Tu>

+ Uy D> = Cuppuy D> | Z() (5.32)

which i{ncludes the dynamic Equation (5.30), since it was used to
develop the above payoff functional.
Thus, from player 2's point of view of a secure strategy,

player 1 minimizes at arbitrary time t = t
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1 ‘
’ - - + - L

+ <oy > - vy, (5.33)

From Section 3.3 we know that the globally minimizing control of

player 1 is
-T1.", (#® 5.34
up = T, Dy (#x, +Tu) (5.34)
vhere
* .1
D)= (L+TT, ) (5.35)
Substituting Equation (5.34) into (5.32) gives
-l E -T.T *D +T T *D
Jpup) =3 B <#x, - T)T; D, (#x,+Tyu,) + Tyuy, #x,-T,T; D,
*
(on + Tzuz) + 1‘2\12) + ('1‘1 Dl(.xo + 'l‘zuz),
*
T, 1’1(0:° + 'rzuz)> - <upu, > | zz(t), (5.36)

vhich simpli{fies after some algebra to

Jz(uz) -% E I(Qx°+rzuz.§1(010+‘rzuz)> - (uz.u2> | zz(t)l (5.37)

Let us define.

rTlﬁ‘-o'I

R £ S

T
2, $2 I[:(e) -0 [x© - 5,0] |zz(:)l<s.sa)
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and consider the term
4 {<Qx,bl.x>|zz(t).} - {Q(x - Qz + 4:‘2).»l o - S‘z + 92)> Iz, (t)

<#x-2).0 0 -£)> |2,

+2E { <O(x - Qz)v

<e%,.0 08,5 |2,() (5.39)

D e, > |Zz(t)) +E

But
(5.40)

E l(o(x - 4:‘2).1)104‘2) |22(t)l -<_.Qz,n1.92> - <ef, 008> =0
and
E ‘(0(: - 92’"’1 *(x - Qz)> |z2(:)l - l(o"nlo(x - Qz),

(x - 92)> |Zz(t)| - tr lornlirzl (5.41)

where tr [ -] is the trace operator.

Thus, in general, the payoff functional can be written as
L) =t lced +1.u.,0 (8d +T,u)d> - <upuud
242 2 2 221 2 272 2’72
T
+cr oMo ep,] \ (5.42)
and Equation (5.37) becomes
Jz("z) 2 <0x2° + ‘l'zuz.bl(Oxzo + Tzu2)> <“2'“2>

T
+ tr [0 D10P2°] l (5.43)
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on s 3 ‘K(to)lzz(t)l - ;O

Pz = cov Ix(to). x(to)l - ’o

(5.44)

Since tr QTDIQPZ ] is independent of the control uz(t) R
- [}
maximizing Jz(uzj is equivalent to saximizing

Fz(uz) - -;— < 9920 + Tz"z'nl(’%o + Tyu,) >-Z uz.uz>l(s.45)

From the results of Sections 3.3 and 3.4, we know that the resulting

maximin control for player 2 {is

* * * * *] -1
u, =T, ncxzo -1, ‘1 +TT - 1,T, l .420 (5.46)
or
Y = c.Tmsw©k © (5.47)
2 2 2,
vhere S(t) {s again the solution to Equation (5.1l1), t.e.,
(5.48)

§ = - SP(t) - FR(t)S + S lGl(t)Glr(t) - cz(c)cz"(:)] $: 5(T) = 1

The corresponding optimal response for player 1 is from Equations

(5.34) and (5.47).

* * *
u; =T, D (8x 4 T,T, “on) (5.49)

Bowever, the initial time to is completely arbitrary, thus if
Qz(t) can be made available for any t, the open-loop controle

(Equations (5.46) apd (5.49) can be applied continuously and
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S immediately to yield optimal feedback control laws by replacing
n to by t.
P . Subst{tuting Equations (5.46) and (5.49) into (5.30), the

- dynamic system for prbitrnry t is
Py ' - (5.50)
" - 2 = [r® = 6,0, 30 | 5 + [o,®

-6, (&) (1, "D, T,) () ”(Tz*“)“)l 2 x@) =%,

m and
BOR
.

zz(t) - Hz(t)x(t) -‘-vz(t) (5.51)

;i The linear-Gaussian assumptions imply that Qz(c) can be generated by
2 s Ralman-Bucy filter based on a prior estimate of the init{al state,

a prior estimate of the variance of the error of this estimate; the

measurements of the state up to time t; and the dynamic equation

£,0 = [re) - s 0@, v8)0) + 6,01, D8I £y
+ OB @9, 1) |2, - B, (08, ®)] ;

chco) - §° (5.52)

where Pz(t) is the variance of the error of player 2's estimate and is

obtained from

2,0) = [P(0) - 6 () (1,"D, @) (0) | 2, () + By(®)

I I l!(t) - 6, (¢) ('1'1*"1”“)] T- I'2(')"'2'!.(')“2.1(')“2(‘)1’2“)‘
rey -, (5.53)
e '
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Bence, the closed-loop optimal controls for player 2 and the corres-

v ponding optimal closed-loop strategy for player 1 are:
* * A
u, 1‘2 Dsz

A
b 4

*ear'pex+1" 1,1 ek, -1 'De? *p, 0%
“p =T, Dy#x+T DT,T, Déx, =T, DeX, + T, D, &%) .50

1f we define fhe symnetrix matrix
¥, () Q7,00 () ¢ T,1) (5.55)

where

T -1
D, (£) -[1 + f & (1,76, (06,7 (1) oTcr,-r)dr] (5.56)
t

then taking the derivative of Nl(t) with respect to t we obtain
(5.57)

N (€)= #7CLED, () @ ,e) + 87,00, @) #,0) + T @,00, ()& T,0)

But
) (5.58)
rRACERENOR L ROLI0
= D, (t) # (T, )G, (636, T (t) &7 (T,t)D, (&)
thus

N () = - T (e) 8T(1,00D, (2) @ (T,t) + #7(T,0)D, (&) @ (1,36, ()G, T (e)

®7 (1,1, () #(T,t) - &' (T,)D, (&) & (T,E)F (L) (5.59)

or

W () = - W (OF(E) - FF(ON (£) + ¥, ()6, (66, N, (&) (5.60)

&
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with boundary condition
:g} N @) -1 (5.61)

The optimal control for player 2 and corresponding optimal

response for player 1 can then be written as

uy (€)= 6,7 (18 (638, (1) (5.62)

uI*(t) - Glr(t)S(t)Qz(t) + c;l"(:)u1 ()%, () (5.63)

vhere S(t) and l(l(t) are defined by Equations (5.11) and(5.60)
= respectively.
&! !\xrthemore,' using Equations (5.11) and 5.60), the Kalman-
Bucy filter (Equation (5.52)) and corresponding covariance equation

(5.53) can be written as

. (5.64)
£, = |r® - 6,6, ®)s @) + 6,06,  ®s )] &, ()

+ B8 O [1,0) - BLO{KO | Gy -5,

;t-j and

- .

2 Py(0) = [F®) - 6,96, (03N, ()] By(0) + By®) [Ce) -6, ()6 T )

b T -

& M) | - 208, @, OB (R, (0); Bye) =B, (5.65)
1f we define

e - :

% X, ¢ [x)x®)T jz,0)]

3 T

% “r|[8m - %] [0 -0 ] 1z,0)

4 e X,0) + 2,(0) (5.66)
r.—:':
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then on substituting the optimal strategies (Equations (5.62) and
(5.63)) into the system equation (Equation (5.30)) we can write, after
post-multiplying by xr(t), adding theltranlpole of the resulting
equation and then taﬁlng the conditional mean of the resulting expres-

sion,

. . . T T4 T T4
X, = X, + L,F - G,G,"5X, + G,G, NP, + GG, SX,

T

2 (5.67)

A T T
- X,56,G," - PN.G G, " + stczc

Substitution of the optimal strategies into the payoff functional
o (equation (5.29)) and using the trace operator allows us to write
T (5.68)
* w1l f T T _ T
Jp e et X, + [ [0, sk s 46,6, TN PN, - 6,0, sRs | 4
t

d d
1f we now add the perfect differentials ac %) R,

d
4t

by adding 5 ()X, (1) - SOXM + [N, &) - 5@ 2,0) - [¥;™- 500

and (- SP) into the integrand of Equations (5.68) and compensate

rz(r) outside the integral, most of the terms cancel and we obtain as

the security payoff or gain floor for player 2

3 (5.69)
e 3,00, o3 @S @x(0) +1 K, 3,0 - 5] 0

Yy

6 T

S st | [ 0@ - 5] py0m, W, n, 0)p, (0)de
3 2 % O R XOLAIOLAROLAOA

5 t

3

? ) The entire game from player 2's point of view can be described
!

by a 2n-dimensional system consisting of the vectors x(t) and Q(t) or
sim{larly of the vectors x(t) and ¥(t). The |x(t).9(t)| system {8

obtained by
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substituting Equations (5.62) and (5.63) into the system Equation
(5.30) to give

x = P@E(®) - 6, (06T @808, () - 6 (66, T@N (OF,©

+ Gz(t)Gzr(t)S‘t)Qz(t)

- [r® - 6 6T @mw @] 2 + [6, 6, @, © - 6, ()6, T )5 Ce)

+6, (:)cz"(:)s(:)] &, ) (5.70)

The input to this equation is obtained from Bquation (5.64) or,on

substituting zz(t) - Bz(t)x(t) + vz(t).frou
. | (5.71)
8= [rr - ¢, (:).cf'(c)s(:) +6,(£)6,7 ()5 (¢) - B, ()8, T (eI, (03, ()],

+ By (B, ()W, "1 (0B, (6)x(e) + B, (0H, (6)W, T (0)E, (£)w, (&)

Then, from player 2's point of view the entire play of the game can be

described by the 2n-dimensional differential equation

H T T T
* . -f-:-?z‘.’z.g.‘.i--i---?1?1-’.‘.1-:-?1‘.‘&-?-1’-‘.’2‘.’3-’5 ....... x
T -1 : T T -1
AR R R S A S
0
PO v, (t) (5.72)
R 2
o, Wy H,

In the above system the white noise vz(t) which {s additive messurement
noise to player 2, appears as process noise to the 2n-dimensional

system.
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5.3 DISCUSS I

The prior commitment and delayed commitment solutions to the

. stochastic differential game discussed {n this chapter are summarized

in Tables 5.1 and 5.2 respectively.

In the prior commitment formulation, the optimal coatrol for
player 1 consists of the sum of a term that {s the same as that of the
corresponding deterministic differential game and a term that is a
linear function of the error in his opponent's state estimate. The
optimal control for player 2 satisfies the Separation Theorem. Deter-
minstion of the feedback gain for the first term of player 1 and for
player 2 requires the solution of a simple matrix Riccati{ equation
with terminal boundary conditions. To determine the feedback gain of
the second term of player l's strategy, however, we are faced with the
often difficult task of finding the solution of a nonlinear two point
boundary value problem defined by the equations for ll and P in
Table 5.1.

In the case of the delayed commitment formulation, the secure
strategy for player 1 is the same as for the deterministic game, while
the secure strategy for player 2 satisfies the Separation Theorenm.
Determinatfion of the feedback gains favolves the simple solution of
matrix Riccati equations with all the boundary coanditions for each
equation given at one point in time,

The secure delayed commitment payoff, Jl’ for player 1 {s
identical to that obtained in Chapter 3 (Equation (3.90)) for the
corresponding deterministic game. The difference between J1 and the

prior commitment payoff, J, can be written from Equations (5.28) and
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\ Table 5.1 Summary of the Prior Commitment Strategles
::; ; = !'(t)x(t) - cl(t)“l(t) + Gz(t)“z(t)p x(to) .('0"0)
Player 1: Perfect measurements
' ) Player 2: zz(t) - sz(t)x(t) + vz(t). v, «J(oy"z)
T
Ie %x ‘:’a)xa) + f | u, T, () - uzr(t)uz(t)l ;a:\
t

-]
u (t) = Glr(t)s (t)x(t) + Glr(t)l(t)'i'(t)
uj(€) = 6,7 ()8 ()
S« - SP(t) i P (t)s + 8 lcl(t)cl"(c) - G, )G, ()] 85 s =1
Ke-NP@t) - P(ON - 8 |cl(z)cl"(:) - 6, (66,7 (¢) |s

+ (5 + 106, (©)6, () B + W) + N ()L, ()W,  (1)m, (&)

+ B (W, (0, ©P@EN; N = 0

daqr- clcfs + czc;s)’:% + mzt“z'l('z -mR); Q) -3,
P = AP + PAT Teeyw, ! :

- - P ()W, “(e)B,(e)P; P(t) = P
AG) = P() - 6, ()6, T |s(:) + u(c)]

I}, u) = 2T @8 @) + 3 T @M@

T .
+ % :r[ f l(-)r(-)nzr(a)wz"(-)llz(-)r(-)do ]
t

N -
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Table 5.2 Summary of the Delayed Commitment Strategies

x = FEX(E) - 6, (6)u, (€) + Gy (v, (), x(t)~KG,, P)

Player 1: Perfect measurements

Player 2:  5,(t) = kz(:)x(:) +w,(0), v~ N(O¥,)

T
= .% xlx’mxm . f _[ulr(t)ul(t) - uz"«)uz(:)] dt

%o

Define: Z,(t) = |(:2(-).0) ; BE€ lto.t)l
Uy & vy = u, (x(t),t)

U,

230

2 = Yy (2,(t),t)

t

@Tu)(t) = f ® (t,7)G(T)u(T)dT

o

a'Ere) = cTeye T, e
D -[ I+ "1"1*' 212*,‘1

*]-1 * -1
nl-lt-vrl-rl] , °z'|1"‘z’z]

Rlayer 1

T
3 -%l:"mxm - f [u{'(c)ulu) - “z'“)“z“)] "}

o

sl

el et &l Al Al el el A




Tsble 5.2 (Continued)

Player 2

i
: !

{

!

u® = T,"8x = 6,7 ()8 (&)x(t)
v, = 7,"pex = 6,7 (IS ®)x ()
§=-8P(@E) - F ()5 +5 |66, @ - 6,6, ) |5

§(T) = I

3 @,%0,%) = % =T (£)8 (¢)x (t).

T

3, - %_g |g"cz)x('r) + / [ulr(t)ul(t) - uzr(t)uz(t)' dtlzz(t)}
to

uz* - rz*n. 2, - cz"(:)s(c)ﬁz(c)

v, = 1,08, + 1, oF, = ¢, T @S (O)x ®
+6 @M ® -5 |5,
§=-SF(t) - FF(t)S +8 |cl(c)c1"(c) - 6,()6,T )]s ;
$(T) = 1
AERS RICRE SOV R NCIARICURE NORR:
g, - [r - 66,7 + 6,6,78|%, + r,u, %, [=2 - &8, |

92 (to) - ;o
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Table 5.2 (Continued)

- T
.“'-»‘. * T T
-n _ rz - [! - clcl ul]rz + ’2 [P - clcl lIl]

. -1
- RETRE, Ryt = R

. . Jz(u:.uz*) ";'x'r(t):S(t)x(t) + %'i’z‘r(t) lul(g) - 8§(t) l‘i’z(t)

e . T

+-21-tr[ f[ntl(-) -5 | rz(-)uz"(-)wz"(.)nz(.)rz(.)d.]
u t

i e e,
8o 2 PR DR B
v . . Lt L e .

P

v Pe) "t 4
oS

TR

1{.‘“.'.‘..
o ne” -‘ .
.
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(3.90) and using the trace operator as (5.73)

T
30,%00,%) - J@hu) = -er fips [ HIROIR,T(00W, 7 ()R, ()P (03¢

t

Taking the trace of Equation (5.13) and collecting terms, we can
write

tr| N l- tr

-N lP(t) - r(:)uz"(c)wz'l(:)az(c) - ¢, (c)cl"(:)sl
- lr(t) - r(:)nz"(:)wz'l(c)gz(c) - 6,(®)6,  (6)S ] Tx

+ NG, ()G, " ()N + SGz(t)GZT(t)Sl ; tr | N(T) l =0  (5.74)

The above equation can be viewed as a linear differential equation
driven by the term tr |Ncl(t)GIT(t)N + scz(t)czT(t)s I, which 1is
greater than or equal to zero. Since the terminal value, tr lN(T)I ,
equals zero, it follows that ttl N(t)l can only become smaller than
zero as time progresses, and we conclude from Equation (5.73) since

trl P land tr |W2'1| are positive that
[] [ ] ® [ ]
J(u),u)) € I, (v,%,u,°) (5.75)

To study the relation between J and the delayed commitment
secure payoff, Jz, for player 2, assume that P(t) = Pz(t), then

subtracting Equation (5{69) from Equation (3.90) we obtain

T R A A e LR ILER TR R

(Cont'd)
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(5.76)

T
+ flll(-) - (8 (s) - S(-))]P(-)Hzr(-)wz'l(-)uz(-)r(-)d-l
t

But from Equations (5.13), (5.60) and (5.48), f.e., the N, N, and s

equations, and using the trace operator we can write

:r‘iz- o™, -é)l-c:[-ln- ® -] F-F|n- o -]
- ®6,6, K, - (5 + 06,6 T + N) +umz"w2'1uz

1171

+ “zt"z-lﬂzml 5 tr ‘n(‘r) - o - S(‘r))l =0 (5.78)

From our earlier observation tr lN(t)l € ONt< T, and we can again
view the above equation as a linear differential equation of

er [N - @8 - 5)] driven by the term tr [- me6, - ¢ +mee]
S +N) + mzrwz'luz + Hzrwz-lnzl’ﬂl which is smaller than or equal
to zero. Since the terminal value, tr|N(‘l‘) - ml('r) - S('t))l , i
equal to zero, it follows that tr ‘N(t) - (Nl (t) - S(t))l can only

be greater than or equal to gero. Thus, all the terms in Equation

(5.76) are > 0 and hence

* &
Jz(ul Uy ) € J(ui,ui) (5.79)
and as a result of Equation (5.75)

3,0," 0" £ 30,6 € 3,6, u,) (5.80)
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\ Note, that {f Hz(t) is large, or if during the game
! P,(t) — 0 ; P(t)— O

then

H(E) —= OF () - §(2))

. and

* %
JZ(“I u, ) — J’(ui, ui)

The relationship between the various payoffs discussed above is

shown in Figure 5.1

Payoff
T I(u!,ul) 3, (uy o, )
2Y1 2 172 1V1 *2
Gain Floor Prior Commitment Loss Ceiling
(Player 2) (Player 1)

Figure 5.1 Relationship Between Prior Commitment and
Delayed Commitment Payoffs

It i{s immediately clear from Figure 5.1 that {f player 1 knows
that player 2 is committed to strategy u.", (t), he should play ui (t)
and similarly for player 2. Thus {f the players had to determine at
t=t, the strategies they voulq have to play for the rest of the game,
ui (t) and ué (t) would be the proper choice. However, as we have seen
in our tutorial example (Section 4.2) as soon .u the game has advanced

to a time t > ¢, ni(t) and ui(t) become unsafe strategies, as compared
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to ul'(t) and uz*(f) respectively.
On the other hand, {f either player 1 or player 2 commits him-
_self to his secure strategy, he can only be assured of his secure
payoff. Thus we find, as i{s usual with games with imperfect infor-

mation, that the players should keep their strategies secret.

The actual payoff, Jo’ can only be calculated at the conclusion
of the game, {.e., when everything has become a fact, and it is

calculated from

T

3, =3 {x mx(m + f [ul'r(:)ul (t) - uzT(t)uz(c)I de (5.81)

%o

which depends on the actual values of the control functions ul(c) and
uz(t) employed during the game, which in turn depend on the strategies

employed and the actual values of wz(t).
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CHAPTER 6

A PURSUIT-EVASION EXAMPLE

One of the differential game problems most easily visualized 1is
the problem of purguit-evalion. In order to {lluminate the results of
the previous chapters we will, in this chapter, analyze a pursuit-
evasion problem in two-dimensional EBuclidian space where the pursuer,
player 1, has perfect measurements of the state of his own system as
well as that of the evader, while the evader, player 2, has only noise
corrupted measurements. The problem satisfies Behn's {9] require-
ments for player 1 to determine exactly the error in player 2's
state-estimate, and thus allows us to compare the prior and delayed
commitment problem formulations.

As mentioned in Chapter 5, a physical example of this problem
is a homing missile and an evading aircraft where the missile has an
inertial reference unit which allows accurate determination of its
state vector and, in addition, has considerable ground support via an
up- and downlink to determine the state of the evader., The aircraft
has only noise corrupted measurements of its own inertial reference
system and of the mi{ssile from noise corrupted radar measurements,

6.1 PROBLEM FORMULATION

The space diagram showing the geometric relationship between

missile and airplane or target during the encounter are shown in

Figure 6.1. The missile and target velocity, VH and V_ respectively,

T
are assumad to be constant, Gravity effects have been neglected and

the encounter is assumed to be restricted to the x-y plane.
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The fundamental relations governing missile and target paths

are the velocity equations [22] .

n - Vu cos v,

- VH sin Yu

3
L
~i
w
N
3

(6.1)
Xp = V,r cos v,

VT sin ‘YT

"
.

The angles are subject to change since both missile and target are, of

course, free to maneuver in the x-y plane. .At an arbitrarily selected ‘
time t = t_, the angles vy, and L have some initial values Ym0 and |
‘y,m and at a later time t are perturbed by small amounts Ya and

Ye to ¥y and Vo respectively, while the line of sight has changed

from zero at t = t, to o . Under these conditions, the instantaneous

angles of the velocity vectors are
Ty = Yo + ¥, @), 6.2)

and
Yo(®) = vgo + ¥, (®) (6.3)

so that the linear velocity components are

xM-VM CO® Yyo y-vu sin Ym0
’n'vn sin Yu0 + y-vn €08 Yo
. (6.4)
"T'vr €08 Yopq " -ytv,r sin

7r"’1~ ein 7‘1'0 + ytv,r cos 7'1'0




wvhere the small angle approximstions sin ¥ = y andcos ¥y =1

. have been used.

If wve assume that the missile and target are initially on a

collision course, {.e.

o
-

o
L

vr sin y.q = Vn sin Y0 6.5)

TR RLY]
Falte

* then using this equation and Rquation (6.4)
! ) (6.6)

ir = Xy =y OB g - Vg cOB y 0 - (7, -y )V S0 vy,

If we neglect the difference term involving Ve = 7o’ the closing

velocity vc is given approximately by
- vc..i,r - iH.-vr LR Pl ™ 6.7)
and in view of the assumed constant velocities
2y (8) - X (&) = V (T - ©) (6.8)

Since only the relative positions of the missile and 4urset need to be
known; 1i.e., x (t) -x,r(t) - x“(t) and yr(t) - y,r(t) -yu(t), the relative
uissile~target position is uniquely specified by giving the time t
and the projection of M and T on a line, L, perpendicular to the
initial line of sight. Thus, the original problem has been changed
from a two-dimensional intercept problem with unspecified finsl time

T to a one-dimensional intercept problem with a final time

;N




6.9)

3 : ' If we let yi and vi be the projection of the missile's position

and velocity respectively on L, then we obtain as equations of motion

for the missile

3y~
1.1 (6.10)
vl - -Vn sin ‘Y“o
with initial conditions
' .
y (to) - zn(o)
(6.11)

v(to) - vu sin ‘Ym

By the same analysis we obtain a similar set for the target with the
subscripts 1, m and M replaced by 2, t and T. But &V = 32,2 n, vhere

n is the lateral acceleration in G's, and we can write

;i "%
. (6.12)
| vl = Klnl
and _ “
- V2"V
fi . (6.13)
4 vy = Kny
E:': vhere
N
-

ll = 32.2 cos ‘Vm.

(6.16)
Kz' = 32.2 cos ‘y,m,




..” ,.
. .
R
oAt - . 3

ny, 0, are the latersl missile and target accelerations respectively
in G's,

Now let ui (t) and ui (t) be the missile and target called for
accelerations respectively, and let us assume the following missile and

target system transfer functions

BY URRUTEP SRR
v CRE TR S Y N e PRI R

8y (s) 1
]
u ) Ti8 41
. (6.15)
' oy (®) 1
“i(') Tys + 1
wvhere both LAY and ‘}2 are positive real numbers. The resulting
equations of motion under the above used assumptions of
1. Constant target and missile velocity
2. o> ‘Y- and ‘vt are small angles
are then
y1(6) = v, (®)
vl(t) = ‘1“1(‘) (6.16)
n u!
. 1 l
n (t) - - cee o e———
1 T, fl
and
y3(8) = v (t)
vz(t) - ‘z"z (c) 6.17)
n u;
n (t) . e -—L <+ -—2—
2 T, T,
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If we define the vectors

4 P . P 1 “
N 7 712 73
y - Y21 | = | Y1 | and y," Y22 |= | V2 (6.18)
. Y31 | 732 By
=9 C > J - J o J

' Then we can write the system for the missile or player 1 as

- 1 w
0 1 0 ’ 0
* - ) '
1 0 0 Kl " + 0 uy (6.19)

with {nitial conditions

: -
n(®
44 (to) - VM sin %o (6.20)
° ]

or

’1 - ’iyl + Gi“i ’ ’l(to) - ’1 (6.21)
[+

and for the target or player 2 as

g ® 3 SRt

[ T [ 1
o 1 o 1 o
3 ,=]0o o x|+ o |u (6.22)
: 0 0 -, l/r,
F - J L o
) 94
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-

with inftial conditions

: 7, ©)
: ]z(to) - V,r sin 'Y,ro (6.23)
o § 0

- ‘I { J
7 or
Y=y, 4Gy 5 () =y, (6.24)

[+]
and with a final time
x.(t) - x (t)
. 4 *M'% (6.25)
[

Player 1 has perfect measurements of his own and his opponent's

state vector, vhile the measurements of player 2 are of the form

: - ' 1N ' (6.26)
£, (t) = Hy(t)y, (t) + w,(t)

vhere vi (t) and vi (t) are Gaussian white noise vectors, with zero

mean and with
cov [wi(t), wi (D] = W'(t)8(t -7)
. cov. [v,", (v), vi (1)) = uz'(t) 3(t -1

(6.27)
cov lvi(t). vi(f)l - C(t) 8§(c -7
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| 2 [ I, 1 0
| 1ezE{e [nm - y,m] [ol =°] [r,0 - y,m]
T
. + [u1% cermy rui ey - usT @R, (®u3 (0| de (6.28)
to '
2

where both ll (t) and Iz(t) are positive definite and a” is fntroduced
to allow for weighting of terminal miss against energy.

The above formulation will now be recégnized as the classical
interception problem in Euclidean space; i.e., player 1, the pursuer,
attempts to 1ntoiccpt with player 2, the evader, at some fixed time T,
vhile the latter tries to do the opposite. Both players have limited
energy sources and do not care about the difference in the velocities
of the two players at the terminal time.

From the point of view of the criterion, the number of "inter-
esting” vari{ables are the same as the number of control variables.
Hence, this formulation of the game basically satisfies Behn's
criterion for the ability of player 1 to determine the error in the

state estimate of player 2,

If we define

@) =[5, 1o o] [¢,me ) - e, @mOy,®] 629

vhere Ql(t,f) and Oz(t.'r) are the transition matrices for player 1
and player 2 respectively, then x'(t) represents the terminal miss

.




predicted at time t on the basis that no control {s applied during the
‘ interval [t, r].

The above transformation allows us to reduce the dimension of

the problem since on taking the derivative of Equation (6.29) and
using (6.24) and (6.25) we obtain

. 58 (1,t)
x@ = [1}0 of [——‘5;—— Y (6) + & (T,0) ¥}y, + Glu))

98, (T,t)
ot

’2(t) - ’2(':::) (7572 + czui)]

= [zt 0 o] [e,aercj - &, eI05;

- - ci (t,‘r)ui + ci (t,'l‘)ué (6.30)

with

() = [110 o [,y () - @,y 0] (631)

where

6j(e,T) = - [1 i 0 o I’l"’-‘)ci]

(6.32)
G} (t,T) = - II i o o] lozcr,:)c”
while the performance criterion in terms of x'(t) is.
T : (6.33)
= -} x , a2 Temx' (1) + j [ uir(t)nl (®)u) (&) - uz"'(:)m2 (£)uj (t) ’ de
t
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For our example, the transition matrix of the system of player 1 is

g = .
- -T/T -
1 T -11712(1 -, T/7)
-T/T
eaey=- | ° 1 Kpnd-e b (6.34)
‘ /T
o o /M

wvhere

Te= time-to-go =T - ¢t

The transition matrix for player 2 is the same as that for player 1
with the subscripts 1 replaced by 2.

From Equation (6.32), Gi (t,T) and Gi (t,T) are scalars and are
given by r, -
| 0

. G (e, = - |1 0 o]ol(-r.c) 0

1/1'1
b -
-T/T -
-4+K T,(1- LI O T/T)) (6.35)
and [~ A
0
G(e,T) = - |1 0 °|’2“-" 0
llrz
L o
/T -
-4+, 7,0 -0 /M2 /1)) (6.36)

...........................................

.....
DA -

.................................




Thus, 6.37)
. -— T -— -— f -
x'(t) = - xl 1’1(1 -e /N - Tlfl)ui + Kz 1’2(1 - e /T2 - T/TZ)“i

with
x' () = lyu(O) -:yT(O)l + |-r - tol lvu s1n 7,0 - V. sin yml (6.38)
and
x,(t) = x, ()
T = (6.39)
vc

With the dynamical system reduced to Equation (6.37), the
measurements of player 2 must be reduced to measurements on x'(t). If

we define
(6.40)
2@ £ [1 o of[e,memn @eyg® - ¢,m08 @250
then using Equations (6.26) and (6.29) we can write
” -1 ] -1 N
5@ =1 o offe,mee, +87 D) - 8,@00, + 1,7

= x'(t) + [1 0 o] [olcr.t)al'lvi - Q(T.t)nz'lwi)] (6.41)

or

z'z'(t) = x'(t) + v'z'(t) (6.42)

vhere the zero-mean, white noise process v'z'(t) is given by

wy(t) = Il 0 °l l.la’t)"l-l"i "’2“")“2-1"51 (6.43)

9
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with (6.44)
-1

-1
"}' - ll 0 o] l.la’t)nl-lvin;r 91('1'.:) -,lgl‘lcnz'l' ’z(r,t)

) -1 -1
- 8,08, cwT o @0 +e,0,08 T oz(r.t)|[1 0 o]

If we define the energy weighting matrices Rl (t) and xz(:)
vhich in this case are scalars by ru2 (t) and rzzz (t) respectively,

then on using the transformations
' .
“1 - rllul (6.45)

we can vwrite the system equations as

. acl(r.:) ncz('r,:)
X = = ——;W— ul(t) + -;;;?t_)-— uz(t) (6.46)
u'z'(t) = x(t) + ng(t) (6.47)
Defining
© uci('r.:) &, 7, ,1 -71'-/"’1 s, <
G,(t) = ] -e - T/T
1 ™ ™ 1

aG! (T,t) aKk, 7 [ -7/T
G, (t) = L - —22 1-.1'/2

f22 22

(Cont 'd)
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'z(‘) - u_;(t)
vz(t) = awj(t)
W8 (e T = czﬂ'z' (t -7). (6.48)

We have the original problem reduced to the notation used in this

paper, i.e,, the dynamic systeam is

(6.49)
. ak. T 77 aX. T T
x(t) = - -;:T—l [1 -e n T/"'I] u, (t) % _r_;_;l [l -e /%2, Tf"zluz(t)
zz(t) = x(t) +v2(t) (6.50)
with inf{tial condition
(6.51)

“(t) =x = a Iy“(o) - y,(O)] + IT - tol ["u sin Yo = Vp oin "rol

for player 1 and an a priori estimate of x(to) for player 2.

nnd_vtth
x.,(0) - x_(0)
T = T ™ (6.52)
vc
Or
x(t) = - Gl(t)ul(t) + Gz(t)uz(t) 3 x(to) -x, .53
sz(t) - lzx(t) + vz(t)
and the pcrfomncol criterion {s
r (6.54)
J(ul.uz) - ‘;' {xr(‘r)x(‘r) + j lulr(c)ul(t) - uzr(t)uz(t)l dt,
t

101

. . - e e . o e Bt R S
a—e e men —aa_a_aem




ot o SR A ae e
H .'I T Rt
RESMRN 1«: eSS T

. e g
Sr

vry
LR AR,

v}]x.

v

-

Note that in addition to our simplifying assumptions of small angles,
Y and 0, and constant velocities, we have {mplicitly assumed that
player 2's initial estimates are such that the final time T {s the same
for both players.

6.2 DELAYED COMMITMENT SOLUTION

With reference t'o Table 5.2, the delayed commitment strategy

for player 1 is given by
v, (®) = 6,7 (£)S (£)x(t) (6.55)

wvhere

§= |—F— (-e 1'-;/"'1)2

2 2 T/, -
c———(-e 2-r/fz)2 s

(6.56)
with

8(T) =1 (6.57)

The above equation is separable and has a closed form solution; {.e.,

.2‘2 2 -

T
- -TT
s‘(z)-u][ 1 a-o"n

t ™1

— 2
- r/‘l’l)

2 ]a: (6.58)
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and S(t) is found to be

," e 2, 2 2 2 l 22 _.m2, .3
. 8(t) Gru L2 / l Gru 22 + .2‘ Tyy 6T,°T - 61'1'!,' + 2T
- «2T/7 -T/7
< +3130 - o Iy . 1zr1 T 1,
g - 2 2 3 3 -21/7
i -a%x,) % £ IGT T+l 0 )
= -‘1‘/'r
- 1212 2] l (6.59)

.
;‘.'
ko
v
[
[
I“.-
[
P
[N
8
[t

Thus, the optimal delayed commitment control function for player 1

is given by

u, () = Glr(z)s ®)x(t)

= 6aK, T 24 . e-T/Tl - T/T)x(t)/
1T1%11%22 1
2 2. 2.2 2(..2= -2 . =3 3 -2T/T)
,5:11 Ty, +ak’‘r,, I“l T-6nT +2T 437 (1-e )
P -1/ 1] 2 2 -2 =3
-127, *Te 712 T, [er T-6 ,T24 2T

3, _ _-2T/T, M2
+37,7(1 - e ) 121- ]l (6.60)

The corresponding optimal strategy for player 2 at time t is then

u,* (t) = Gzr(t)S(t)x(t)

-'rl"'

- 64K, T,r 2. T, yx(e)/

272%11 zz‘1

’ (Cont 'd)
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; lsru Ty ule Ty |6'r - 61, T4 27> +31'12(1-e'ﬁ/71)
C I N
- 127 %%¢ /n| . o222 [61,2T - 67, T2 + 2T°
) ‘ +3r,%q - fﬁﬂ ) - 127,77 72” (6.61)
and the secure payoff for player 1 at time t {s
3, (“1.'“2.) = %xr(t)s (t)x(t)
‘ - 31'112 Ty, 2, (t)/ l 6rn 22 azllz 222 ls?lzi
ﬁ : - 61,724 2734 3713 a- .'ﬁm) - 1272 i-'?/fll
| - o’ % 2 [or,7T - 61'2.?2 + 272431730 - .'ﬁ"z)
- 1272 Te 72]] (6.62)

The delayed commitment strategy for player 2 at time t {s

given by

u,* (t) = cz"(:)zs(:)iz‘2 (t) (6.63)

which is simply equation (6.61) with x(t) replaced by 'x\z(t). The

corresponding optimal strategy for player 1 at time t is then

u* () = 6,7 )8 ()%, (®) + 6, T(OIN, (®), (&) (6.64)

vhere N (t) satisfies,




[ N N Y

.....................................
...............

2.2
.2‘ --r/f - 2
ll(t) - ——-1—1—[ l-e - 111'1] nlz (6.65)
with
N(@T =1 (6.66)

The above equation is separable and its solution is

2 2 2 2 = =2 —)
lll(t) - 6ru / ‘Gru l61’1 T - 61’1'1' + 2T

-2T/7 T/
+ 31’13(1 -e l) - 121’12 T lll (6.67)

Hence, the optimal response for player 1 at time t is

-T/Ty -
v, (t) = 6aK,T,¥ urnz(l SRR LAt N Y,

- - -2T/T
2 |61’12 T - 61112 + 31'13(1 -e 1)

2
“"u 22 *‘2‘1 T2

2 l61’22 T-6r,T2

2
-2%/m _ -?/le I
]

-rf
- 121’2'1‘e ]_.2‘2 -0-2'1'3

2 11

3, . 2
437,°(1L - e ) - 127 T

T -
+ uxlrlru(l -e M '1‘/11)920)/

3 - 2?/ ‘l’l

2 + 3113(1 - )

2 =2 —
Iﬁru +a x lG‘r 61’1'1' 4+ 2T

- 1212 T 1” (6.68)
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fﬁ . If we assume that the noise variance for our example s given by
& | cov |vz(t),vz (-r)l - W, (6.69)
‘and that the measurement matrix of player 2 is

L ' n2 - h2 (a scalar) (6.70)
I' . then the expected secure payoff for player 2 at time t is

3,(s,°u,%) = 7} er(t)s(c)ﬁz (t) + % %, (‘>T"1(t)""'z (t)
T
a +§ tr [ f |“1 ® -5 | pzz(.)hzz(.)wz'ld.]

2 2. 2 2 -2
- 3:11 nzﬁz )/ lsru Ty, +a "1 Ty, le-r T- 67T

- -2T/T - -T/T
+ 273 +31-13(1 -e / ly . 121-12 Te 1

2 2 =2 . =3 3 -2T/7,
axzru |61'T 6T,T +2T° +37,°(1 - ¢ )

-r/f
- 12722§i 2]

2
1

2.2 2 2
+ 3:11 x, )/ ‘6:11 + 'K

-2T/T
3 + 3113(1 <e 1)

r [f[ulca) -s@)

rzz (l)hzz(o)w2°1dn ] (6.71)

67.2T - 61,272

1 1 + 2T

2—
- 1211

Note that we could obtain the gain coefficients of the controls for
player 1 and player 2 in the delayed commitment solutions in closed
form because all the differential equations i{nvolved in the computa-

. tions are initial value problems. Furthermore, as can be seen from
Table 5.2, the coefficients of the filtering equations can also be pre-
computed, {.e., they can be calculated off-line, and are again simple

initial value prodblems,.
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6.3 PRIOR COMMITMENT SOLUTION

In the case of the prior commitment strategies, the gain matrix

. for the error term in player l's control is coupled to the error

covariance matrix of the Kalman filter, Let us assume that the co-

variance of the error of player 2's initial estimate is
Po =P, (6.72)
then from Table 5.1, the following set of simultaneous differential

equations are found for the second term in player 2's control and the

nature of player 2's estimator,

2.2 -
. IZK T -T/T - 2
Ne —2. 2 |1'° 2"”"] sz(t)
. 2 2
22 :
2 2.2 -
K, T - - 2
—1 1 |1 A W ] ‘n(:)z + zs(:)u(:)l
2 1
LB} |
2p%h2 )
+ N; (6.73
w,
N =0
. .21(121'12 T - P P%h?
Pe -2 ll -e -T/T ] IS(t) +u(c)] - i (6.74)
2 1 %)
rn 2
P(t) = p,

Note that we are now faced with solving a nonlinear two-point
boundary value problem. Experience has shown that such a problem if

solved directly 1is chy sensitive to the error of the unknowns or
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guessed initial conditions. Frequently, the guessed value of the

missing initial condition has to be practically the correct value

.before the problem will converge. Hence, we have to resort to such

computational techniques as quasilinearization or invariant imbedding
to solve the aone equations, thus greatly increasing the computational
load as compared to'simple {nitial value problems.

Leaving N(t) and P(t) undetermined, the optimal prior commitment

strategy controls are then given by

up (6) = GIT(t)s(t)x(t) + cl"(c)r:(c):z(c)

= 6ak.T,r,,T (1 - e-T/‘r1 - T/T)x(t)/
1111722 1
=2
2 2. 2 2 T =3
|6ru r22 + a xl Ty [67 T - li‘l'1 + 2T
- (6.75)
s3r3a -y el -T/‘rl] -a’x, 2 2
1 e 1 't ek IR B
- - -2T/T. -T/T.
[692 T - 62,72 4272 43r,%a - ¢ 2)-121)%% 2”
K,a7, .'-'f/‘rl
+ A-e -TT )N(t)x (t)
r
11
and
u) (£) = czT(c)s(:)Qz(:)
-?/1’2
= 6aK,T,r., 22(1 -TT )xz(t)/
2 2., 2,2 2 2= =2 , =3
6ru Tyo +a ‘1 Ty l61’1 T - 611T + 2T
_-2T/7 - =T/T
+aa - lll'
' (Cont'd)
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v o, . Ld L
LRI L
0
*,
’

-

:i: : x } 2 2 2= -2 =3 3 -2'-1‘./72

; o 32!2 LI} '67 T - 67,7 f 2T + i, (1 - e )

l. ; < -r Al

% t -121,° 2]] (6.76)
3 . |

i . The expected prior commitment payoff at time t {s given by

N Iy ,up) = —x Te)s e)x(e) + - %,  (ONOF, (t)

PO 9K}

T
+% tr[ [ u(f)r(f)nzr(f)vz'l(f)nz('r)r('r)d‘r]
t

2 l61’12¥ - 61,12

- .

11 22 1 F22 1

‘ - 3rnzt222x2 )/ { 6r nzx 2

R

' =3

2— T/
+ 2T

-2T/T
+ 3713(1 -e lyonam

2.2 2
KT

-27/T -T/7
Ie-r T - 67.T +3‘r 31 - e 2)-1222?e 2]'

2
T
+ % u(:)‘i'zz(c) +12= f N(s)l’z(s)h;vz-lds 6.77)

6.4 NUMERICAL EXAMPLE

In this section we present a numerical example of the pursuit-
evasion problem discussed in the previous sections.

In the selection of parameters, the specification of ‘2.
'1 - rnz and "2 - rnz in the performance criterion (Equation 6.33)
has to be such that the terminal miss 1is acceptably small, and pro-

duces tolerable levels of control for the missile and the aircraft.

A choice that frequently results {n acceptable levels are| 23):
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;} L .2 l-l = maximum acceptable value of lxi - ‘5] 2

L e

= T x maximum scceptable value of [uil 2

) rzzzl 1. T x maximum scceptable value of lui lz

o~ . If we assume a final time T of 10 sec. and a maximum missile accelera-

2

}i tion of 10 G's, then T, " .'OOI(G2 - .ec.)-l. Similarly, for a

maximum airplane acceleration of 5 G's, rzzz = 004 (G2 - .ec.)'l.

2 . .06 ££.5°L. The

Assuming & terminal separation of 5 ft., a
constants and parameters used are summarized {in Table 6.1.

By assuming that tllz < rzzz we assure that the relative
controllability requirement discussed in Chapter 3 (Equation (3.86)) is

satisfied. From the equation for N in Table 5.1 and player 2's

estimation equations in both the prior commitment and delayed commitment i
solutions (Tables 5.1 and 5.2), we see that the range of possibilities

of the nature of information available to player 2 depends on the ratio
P, P
v in the prior commitment or
2 ¥
game. We have investigated the effect of the nature of the measurement

in the delayed commitment

information of player 2 to the game by varying Wz over a range from
10 to 10% .2,
To obtain the results for the prior commitment solution required
the solution of a non-linear two-point boundary value problem. The
. - quasilinearization technique was used to obtain the solution. It was
found that four {terations were sufficient to éonvnr;c to the solution,

All solutions were obtained on a Control Data Corp. 6400 digital

computer using a fourth-order Runge-Kutta integration technique with
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TABLE 6.1
CONSTANTS AND PARAMETERS USED IN A NUMERICAL EXAMPLE OF A
! . PURSUIT-EVASION GAME
v
. T = Pinal time’ . 10 sec.
ty = Initial time = 0 sec.
F K, ~ 32.2 cos v - 32.2 ft/sec? - ¢
; K, = 32,2 cos Yo = 32,2 ft:/uc2 -G
“b L8} = Missile time constant = ] sec.
Ty = Afrplané time constant « 2 sec.
2 2.-1
s = Terminal miss weighting factor = 04 (£t7)
2 2 -1
28 = Missile control weighting factor = .001 (G - sec)
2 2 -1
Tyo = Airplane control weighting factor = .004 (G~ - sec)
P° = Initial error covariance = 100 ftz
wz = Measurement noise covariance = 10 —= 104 ft.z
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an integration interval of .0l seconds. A listing of the computer
program is presented in Appendix A. No‘attempt has been made to
‘optimize the computer ﬁrosrnm.

The error varlaﬂce of player 2, Pz(t), in the delayed commitment
game i{s shown for various values of w2 in Figure 6.2. The error
variance, P(t), in the pfior commitment game is shown i{n Figure 6.3
for the same range of values of Wz. The delayed - and prior commitment
error variances differ at most by 3.2 percent.

The feedback gains Gl(t)S(t), Gz(t)S(t) and Gl(t)N(t) for the
example from zero to 7.5 seconds are shown in Figure 6.4 and on a less
sensitive scale from 7.5 seconds to terminal time at 10 seconds in
Figure 6.5. The curves for Gl(t)S(t) and Gz(t)S(t) are of course,
independent of Vz, but it was found that Gl(t)N(t) is also appropriate
for all values of Wz in the range from 10 to 104 ft.z. Near the
terminal time Gl(t)N(t) is completely independent of w2 and varies
less than .l percent at t = 5 seconds for the range of wz indicated
above. This is clear from the equation for ﬁ in Table 5.1 which shows
that w2 effects N(t) through the term P/w2 and for the latter half
of the game P(t) is s0 small that w2 cannot have an appreciable effect
on N(t). Only near the beginning of the game does Gl(t)u(t) vary
with "2 but its value is so small that it cannot be displayed on
Figure 6.4. At t = 0, the values for Gl(t)N(t) are given in Table 6.2.

The curve for G, (t) INz(t) - 5(:)l follows that of G, (£)¥(t)

80 close as to be indistinguishable on Figures 6.4 and 6.5, the values

are compared at various times for W, = 100 ft.z in Table 6.3. After

2
t = 6 seconds, the two vn;uoo are identical to four decimal places.
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Figure 6.4 Feedback Gains Versus Time
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FEEDBACK GAIN ~ (SECONDS) /2

+0.3
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0.9
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Gz(ﬂ S(tl

S

G.(1) S{1) =~

Figure 8.6 Feedback Gains Versus Time
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TABLE 6.2
:ﬂ_ VALUES OF Gl(t)N(t) ATt =0
: Wy 6, N©)
e (sec)” 172
10 .1864 E-05
102 .1432 E-04
10° .3416 E-04
10% .3944 E-04
TABLE 6.3

COMPARISON OF Gl (t)N(t) WITH

2 |
°1(‘)|“1(‘) - s(:)] FOR W, = 100 FT
TDME G, ()N (2) 6, (t) l“x(" - s(:)]
SEC. (SEC) 1/2 (SEC) ™ 1/2
0 .1432 E-04 .4013 E-04
05 .24“ !'0" .“08 !-04
l.o 03418 B-M -4866 !-0‘0
105 ¢4365 B-M .5403 !-04
g 200 05313 E"O‘O 06037 E-M
3.0 .739% E-04 .7714 E-04
g 4.0 .1014 E-03 .1026 E-03
2 5.0 .1443 E-03 .1447 E-03
- 6.0 .2252 E-03 .2252 £-03
H
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The difference between the prior commitment payoff, J, and the

delayed commitment payoff for player 1, Jl’ shows the dependence of J

on "2 snd is defined {n this paper as the relative criterion of the

prior commitment game. The relative criterion for the delayed commit-
ment game i{s obtained by taking the difference between J2 and Jl.

The relative payoffs for a Hz of 103 ft.z are shown in Figure
6.6, The relative payoffs are always negative, indicating a reduction
in player 2's payoff compared to the perfect information game. Further-
more, the relative payoff for the deliyed commitment game (J2 - Jl)
is more negative than that of the prior commitment game (J - Jl)

indicating the relationship between the payoffs as discussed in

Section 5.3 (see Figure 5.1).
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CRAPTER 7

THE NOISY/NOISY DIFFERENTIAL GAME

In this chapter we extend the presentation of the previous
I . chapters where ltthck both players or only one player had perfect

state information to the case where both players have noise corrupted

measurements.

' Since both players are faced with the problem of extracting

- useful information from their noise corrupted measurements, and
neither player can determine exactly his opponent's estimation error,
we are led in the pribr commitment formulation to the addition of
correction terms {in each player's controller and thus initiate the
vicious cycle of estimates of estimates,

The problems formulation for this chapter is as defined in

Section 4.1. The basic equations are repeated below, but for a more

careful definition the reader is referred to the above mentfoned

section. The dynamic system {s described by

ndrtel it
PRECRE A

dx

x(t) = 2E- o P(OX(E) - 6 (t)uy (8) + G,y ()u, (&)

g, () = H (t)x(t) + vl(t) (7.1)

£y (6) = Hy(£)x () + wy(t)

ngra B k St Ara AT | STt v

The noise processes Iv‘(t)l and "Z(t)l are white Gaussian, with
properties

T
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cov lvl(t). vl(f)] - Hl(t) 8(t -1)

cov lvz(t). vz('r)] - Hz(t) 8(t -1)

cov l"l ©), vz(-r)l - 0 (7.2)
Por simplicity it is assumed that both players consider the initial
condition x(to) to be a Gaussian random variable, uncorrelated for

all t with v, (t) and v, (t), ﬁnd having a mean of ;o and a covariance

cov lx(to),x(to)l - Po (7.3)
The cost functional or payoff to the game is quadratic:
(7.4)
T : T
Jwm) =K [Tmxem + [ u T @, (esae - [ w0, (0rar
to t,

The class of admissible strategies are restricted to those Ul and IJ2

vhich give rise to the feedback control laws

IJl N -ul(ll(t).t)
7.5

u, = 8, (2, (t),¢)

The delayed commitment strategy to the above defined stochastic

differential game is obtained in Section 1 for player 1 and in

Section 2 we obtsin the délayed coomitment solution for player 2.

7.1  DELAYED COMMITMENT SOLUTION FOR PLAYER 1

From the point of viev of the minimizing player, player 1, the

performance criterion during the actual play of the game at time t {s
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RACERE -} £ {xT()x(T) + ] 'ult(f)ul(f) . uz"(r)uz(f)] & |z (0)
t

and he obtains his secure strategy by finding the saddle-point solutim

to above equation subject to

x = F(E)x(t) - 6,(0u, () + 6, (Duy () ;  x(t) =X (.7

Sim{larly to our assumption in Chapter 5 we assume, for the purpose of
determining player 1's secure strategy solution, that the allowable
strategy for player 2 in addition to being z2 (t) mesasurable is also
z, (t) measurable. Thus. we want to determine that ul' €U, and

1
uz"e Ul x Uz which are optimal in the sense that for all te€ lto.'r]

"1(“1"“2) ng(ul',uz') 5-‘!1(“1’“2.) (7.8)

Hence from player 1l's point of view of a secure strategy, player 2

maximizes at t > to

T
nax %ll xr(‘r)x(‘r) + [ ulr(r)ul(‘r) - uzr(f)uz(‘r)] dr|
u, GUI x 02 ¢
zl(c).zz(c)l (7.9)
subject to

(7.10)
x = P()R(E) - G ()uy (€) + G, (D)u (&) 5  =x(t) ==,
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But for arbitrary t = to’“l (t) and u, (t) we can write the solution to
the system Equation (7.7) as
| T

A x(t) = #(c,t )x + j '- &(T,7)C, (T)u, (1) +&(T,7)G,(Mu, (1"), ar

(7.11)

‘-.. . to

where Q(t.to) is thé state transition matrix vhich must satisfy the

relation

ai(t.to)
9t

= P(t) O(t.to) (7.12)
Q(to,to) =1

Hence in terms of the Hilbert space notation developed in Chapter 3

we can write

1
nax -Z-EI(.xo-'ru +'ru2,.x°-‘rlu +T,u,>

171 2 1 272
uzeulxvz

+ <ul,u1> - CUpYyd> |z1(t).z2(e)| (7.13)
If we now define
P - | - Dx - DT z,0.2,0) (7.164)

where

Qe 'x(c) | "1“”2(‘" (7.15)

and consider the term B ,(0:0, .xo> | zl(t)zz(t), of Equation

(7.13), then we can write for arbitrary t = t

123




-_'

o

3
)
™, v
[
-
- 'I
.

»- ™ 0 Lt A
SOl 54 ORI O AP A
BN s ety Ny 0 DT

QT P e A

x4

r

..........

 [<ex, ox> | 2,©,2,®) =t <o -2+D, 06 -4+ >

12, (£),2,(0) |
-k <o -D,0a-H> + <ox-D, 08>

+ <of ox - D> + <ot 0d> | zx""‘z“)l (7.16)

But, the two middle terms in the above expression are equal to zero,

wvhile the first term can be written as.tr IQTQPI » thus

) '(Qx,.x) |z1(:).zz(c)| - tr [o’n] + ok, 88> (.17
and we can rewrite Equation (7.13) as
max -;- '(QQO - Tl“l + Tzuz,gft\o - 'rlul + ‘rzu2>
+ KUy > - <uz,u2>, +-;'-tr '.TQPOI (7.18)

However, tr 'QT .rol is independent of the control Yys thus maximiz-
ing Equation (7.18) with respect to u, (t) for arbitrary Y (t) ts

equivalent to maximizing 31 (ul,nz), vhere

- - l . A -
"1‘“1"'2) 2 'QQO Tl“l + ‘rzuz. .xo 'rlul + 'rzu2>

+ Qu> - <“2'“2>| (7.19)

From the results of Chapter 3 we know that, whenever the faverse

of (I - rz'rz*) exists, the candidate extremal control u,* fe

2
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u, T, T,T, )  (#x, - T,u)

*
-T, nz(oz’?o - T,u)), (7.20)

=
_ . Furthermore, the linear-Gaussian assumptions {mply that Qo can be
generated for any time t by a Kalman-Bucy filter using a prior estimate

;{-jf of the initial state, Qo’ a prior estimate of the variance of the

error of this estimate, Po' the noise corrupted measurements zl(t) and

:z(t) of the state up to time t and the dynamic equations

A A (7.21)
x(t) = F(t)x(t) - G, (t)u, (t) + G, (t)u,(t)

“1,.41 A
W, ()} 0 g, (t) - H, (t)x(t)
Al CSCH B s o v | et v
1 Wy 2 (8) - By (£)x ()
with
x(to) = io
and.
. T (7.22)
P(t) = P(e)P(t) + P(t)F (¢)
-1 '
W, "(t)y O H, (t)
Ol L o I T R P | P L)
0 W, ()],
with

P(to) - P
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Thus we can write
=1, (08 -1
u, 9 Dy(@X - 1“1) (7.23)
Substituting Equation (7.23) into Equation (7.6) we obtain as
payoff functional for player 1 at arbitrary time t = to
- Llplced - ) (8d - s -
3,() =7 E[Ke% - Tju, +T,T, D,(#X, - T,u)), #% - Tu
B +1,7,"D, (8 % + *p, (8 %
S 2Ty Dy (8%, = Tju)I>+ uppuy > - KTyT, Dy (#%, - T)u)),
A
D,(#R - Tju)> | zll (7.24)
which player 1 seeks to minimize,

B_ 1f we define

 NOES B EE STCRE- ST CY

where

91 (t) = E Ix(t) lz1 (t)l and recalling that the double expectation-
first given more information, then less information (information is
taken away) - is the same as the expectation given the less infor-
mation only 8see [24 ], then we can write 3,(u,) as

1 A * A A
Jyw)) =3 <”‘1° s Ty, +T,T, "z(”"1o - "1"1"”‘10 Ty

* A * A
+ T,T, °2(”‘1° = Tu)> +<u,,u> - KT, Dz(”‘lo - T4,

* A l T
T, 1:2(0xlo “TuID |+t (e op) (7.25)

Minimizing the above expression with respect to uy (t) is equivalent to

sinimizing 31 (“l) » Where
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- 1 A * AL A
3,0,) = 3 {(.xlo T,u, + T,T, D, (& % Tlul),’xlo o X8

%* A %* A
Ty D (8% ST >t ) KT, Dy (#%, ~Ti*p):
. A

nz(ox1° - Tu)> (7.26)

Again drawving upon the results obtained in Chapter 3, we know

that the minimizing control for player 1 is

° o * * *)-1 _A
6 =T [I-»'rl'rl -1'212' 38

-]

- 'rl*n 8%, (7.27)
o |

The dynamic system from player 1's point of view can then be

written from Equations (7.7) snd (7.21) as

(7.28)
x [ ¥ ' ¢,r,'n, @ x
- ----.-----..i-----.--------g-a--g-- -----------------

- [} * 1 1 A
b | PH,'W, 'H, + F+G,T, D, @ mlt"l. 1, PIZHZTHI B Lx
[ *
G, +6.,T.'D.T 0 0
1 ¥ 6T, BTy S R B
gy I o R Bcy e
G, + G,T, DT, 1 " M, W,

with initial conditions

x(t ) =X
° ° (7.29)
x(t ) = io
and with measursments
:1(t) - Hl(t) x(t) + vl(t) (7.30)
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It then follows from the linear-Gaussian assumptions that the optimal

estimates of x(t) and Q(t) given zl(t), i.e.,
2@ =[x 'zx‘t)l

%p(t) = E IQ(:) '21“)' -E |z lx(t) | zl(t)'zz“)l |z1(c)| (7.31)

-E lx(t) 'zl(t)l - Ql(t)

L, SRR

are obtained from (7.32)
A ]
4 S c,T,’D, & %
. I I e 222 2% .. L
by . [
-1, i * -1 -1 A
§ 2, ruzrwz H, | F+G,T, D8 - PHW ~H mztul 2,
L ) 1 |
r *
Gl + Gz'l'z Dz'.l‘1 0
- u1 + :1
G, + 6.1, D.T m Tyt
1 2°2 271 171
T -1 A
p -
Pu P12 Hl ] "l 0 zl lel
+ !
P12 P22 0 0 0 0 0 ‘\
with {nitial conditions
= A -
x,(t)=x
¥ 1Yo (] (7.33)
-
A

®1p(tg) = %,
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while the error covari{ance matrix satisfies
LN
1n fi2 7 G.T
‘P = & | cmwane cema
l L] L] %
[ 9 r: 1
[]
Py By, P Py F oo
.
+ ”"-“I“E
- ]
P12 Py L P12 Py m21"2 By,
L - [}
T
G,T, nzo
* T, -1 -1
P+G,T,'D,8 - PH W H —mztvz H,
r
. - P .1 -
Pih Ppp “1T"1 By (Pu P12
Py By 0 Pl P
b J > J >
with
1
0
Pl(to)

2

PH rwz'lnzr

(7.34)

(7.35)

The optimal minimizing control for player 1 can thus be written

1

L4 - * A -
u, ‘l'z Dsz

u,® - 'rl*n 0&‘1

*
T, °z’1’1
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The Kalman-Bucy filter (Equation (7.21)) and its corresponding
error covariance matrix (Equation (7.22)) can be simplified by the

. following observations. Rewriting the conditional estimates (Equation

(7.32)) wve obtain -

;\ * A ) *
g - rQl +G,T, D, 8%, lcl + 6T, nz'rll u,
(7.38)
-1 A . A -
+ 2,0 l‘x - “1"1, 3 X () =%,

and

(7.39)

A * A *
Ry = By + 6T, D, 88, - [6, +6,T, R

T, -1 A -1 A
+ ’12‘1 Hl ,zl - ll_lxll + Pl!ltﬂl lzl 'ﬂ_lxll
T -1 A '1 A . A - s
+ Py W) Bpx - v, R, Ry = %,
and we observe that, since

NORS: Ix |z1(c)| - 212(:) g ,n Ix |z1(c)z2(c)| 'ZI(t),' (7.40)

it implies that

’1(‘) - Pu(t) = P(t) + ’12“’ (7.41)
and thus
P,y (6) = B(t) + B, (6) (7.42)
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Using Equation (7.42) we then obtain from the error covariance

matrix (Equation (7.34))

- . -1 T
Pip = ¥R, 4+ Gsz D, #7,, 11“2T"z HyP + P F

3 +P (cr*nol B W T Re - e n T
" 12 |6272 Dy 1241 ¥ 121 W, HP
‘ -1 T, -1

- pulrvl Py, - PR W TP 5 R, (e ) =0 (7.43)
‘ and
;%‘j._ b -1 T, -1
s Pyp = Py Wy HpPy, + PRy + GT, "D, 00y, - B TW T H R
: -1 T

- P Twz WP, + ’1z“zt"z HP + P,,F

* T 1 T -1
2y (6,72 D, ¢ - Pgy Wy HP - ByH T TP
~ly .
+ 7w, P - P8 W e P, (t) = 0 (7.44)
where the last equation simplifies to

- -1 T
P, = PP, + c:zr2 D, #2,, + puxzrwz HP + B,,F

-1
MDY 'Gz 2 D2 ’l SR A R R e A

-1 T, -1y ) R
-mfwl HyPyy - PoH W P, 5 By,(t ) = 0 (7.45)

Comparing Equation (7.43) with Equation (7.45) we see that

4 P, () = By, (t) (7.46)
2

=

¥

3
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Thus the Kalman-Bucy filter and its error covariance matrix Equations

(7.32) and (7.34) respectively, reduce to

A * A *
x = (F + GZT DZQ )xl - (G1 + Gz'l'2 I>2'I'1)u1

T, -1 A . 4 -
se uw Ty - BR) s R - E (7.47)
and
. T * * . .T
Pjy = FPy + P|}F + G,T, D, 8P, + P,(G,T, D, &)
- p. 0Ty lup . P, (t) =P (7.48)
n1 v % » 110 o .

- T %* * o,T
P12 FPIZ + PIZF + G2T2 DZ’PIZ + P12 (Gz'l'2 l.)2 )

T, -1

-1 T, -1
- vnulTul Py, - P H W

128 ¥ BBy Y RLEW ORR,
T, -1 -1 T -1
+ P Hy W, HyP)y - P u"zT"z HyP1y = P Hy Wy, HyPyy
+? H W P ;P (t) =0 (7.49)
1282 ¥ BBy S 1248 .

The above results can be written in terms of solutions to matrix
Riccati equations, It was shown i{n Chapter 3 (Equation (3.87)) that
TI*DQQI can be written as GIT(t)s (t)?l (t), vhere S(t) satisfies
Equation (3.98). 1In Chapter 5 we found (Equations (5.55) through
(5.61)) that Tl*Dlo?t' could be written as GIT(I:)N1 (t)¥(t). By a
completely parallel argument we can show that we can write ‘l‘z*DzQ £ as

Gzr(t)Nz(t)Q(t), where Nz(t) satisfies
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f:z(t) = () - F(ON, + NG (6,0, ; N, =1 (.50

If we further define
(7.51)

R, (t) Q'C'T('r.t)la2 ()R, (t)D(t) ® (T,t)

where
(7.52)

*
R (0) @ TT)
then on taking the derivative of llz(t) with respect to t we obtain by

using -
#Tcr,e) = -F (o) oTcr,e)
(7.53)

@ (T,t) = - & (T,t)F(t)

o T T T T T

R2 F & DZRZID. & D2.Q'52G2 ® DZRZID.
T T_T TaT

® DZQ G1G1 Do + .D2R21D.GIGI ®De

(7.54)

T T,.T T
- ®7D,R, D8G,C,” #'D® - #'D,R) D@F

Substituting Equation (7.51) and the defining equations for S(t) and

Nz (t), {.e.,
s(t) & oT(r,e)p(e) #CT,0)
(7.55)

Nye) & #7(r,e)p,(c) # (1)
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the resulting equation is
. T T T
lz - - Rzr(t) -F (t:)x2 - 1!2(:2(1:)G2 (t)R2 - nzt:l(t)c;1 (t)s
+R, |c1<c)c1’(t) - cz(t)czr(:)] § ; B, =0 (7.56)
From Equations (7.36), (7.47), (7.48) and (7.49) the optimal

delayed commitment strategy for player 1 is then given by the follow-

ing set of equations
u* @) = 6,7 (S (OF, ©) (7.57)

. (7.58)
S = - SP(t) - FR(t)S + § Icl(t)clr(t) - cz(:)czr(:)] S ; S(T) =1

(7.59)
1(:) - {r(c) 6, (€16, (015 +6, (06,  (IN, (£) - 6,(1)6, (:)nz(:)] &, ®

MO AMON EXCIE RO &) -3

]

P)y = PP, + B FT() + G, (6)G,TH, ()P, + P, N, (£)G, (£)G,” (t)

11 1 (t)w (t)Hl(t)Pu : Pu(to) - Po (7.60)

P

12" ?(t)Pu + PIZFT(t) + Gz(t)cz'r(t)tlz(t:)l'lz 12 2(t)G (t:)(:2 (t)
- ’11“11"1-1(‘)“1(‘)’12 Pty (OO, (‘)“1(‘)’11 '
+ 2 10 Teow "Leom e)p, . + 2, 1 T(ew, "L (e)n, (0)P
12 1 1(0)P), + By, H, (0)W, 2 (8P

T -1 T -1
- ,llnz (t)wz (t)nz(t)Plz - szﬂz (t)"z (t)Hz(t)le (Cont 'd)
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+ ruaz"(:)wz"(:)nz(c)ru i P, ) =0 (7.61)

N, = - WP(t) - r"(e)uz + uzcz(:)cz"(:)uz TR NORS (7.62)

R, = = R,F(t) - r"(’:)n2 - ¥,6, (:)cz"(c)nz - NG, (z)cl"(t)s

*R, IGl(t)GIT(t) . Gz(t)czt(t)l S 5 Ry =0 (7.63)

Note that the above matrix Riccati type equations do not present a two
point boundary value problem but can all be solved using either for-
ward - or backward integration. This solution can take place '"on-
line" with a digital computer during the actual game.
7.2 DELAYED COMMITMENT SOLUTION FOR PLAYER 2

If we now consider the game from the point of view of the
maximizing player, player 2, his performance criterion during the

game at time t {is

(7.64)
. T
: 3pepup) = FEf @+ [ [0, u M -0, 0um ] ariz,0
“ t
2
E and his secure strategy can be determined by finding the saddle-point
Ei solution to this equation subject to
¥ X = P(OR(E) - G (U (E) + Gy (Duy(8) ~; x(E) =X (7.65)
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: To determine player 2's secure strategy solution we assume that the
allowable strategy for player 1, i{n addition to being zl(t) measurable,

;ﬂ - 1s also Z,(t) wmeasurable and we seek that u *G U, and u *e U, xU

o 2 : 2 2 1 1 2

@: which are optimal in the sense that for all ¢t t,»T

pl * * * % *

3 Jz(ul ,uz) < Jz(ul Y, ) € .!z(ul,u2 ) (7.66)

b

By a completely parallel argument as used for the solution of
the game from player 1's point of view, Equation (7.23), and replacing
max. by min. and player 1 by player 2, we obtain as the candidate

with the Kalman-Bucy filter given by Equations (7.21) and (7.22).
" Substituting Equation (7.67) into Equation (7.64) we obtain as

payoff functional for player 2 at arbitrary time t = t,
1 * A A
JZ(“Z) -2 E l <0Q° - '1'1'1‘1 Dl(’xo + '.l‘zuz) + Tzuz, on
- 7,7."D, (@8 + T,u) + T,u,>
171 71 o 272 272

* ’ A
+ <77y D, (8%,+ T,u,), D @ %o+ Tou, >

+<u,u,> | zz(:)l (7.68)

TaATTTTT T
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where
Qz(t) - Bl x(t) | z2 (t)l and again recalling that the double
n . expectation first over a "finer" and then over a "coarser" set (i.e.,
c;mtalntng fewer sets or less information) is the same as the expecta-

tion over the coarser set, we csn write

- R
.

1
Jpp) = 2 2*

A *
<0x2° - '.l'l'r1 01(0920 + Tzuz) + Tzu

- i T, TREW

-
‘s

* A
.on - T, Dl(”‘zo + T,u,) + T,u,>

"

* A * A
+<T1 "1(”‘20 + T,u,), T, D, (& xzo + T,u,)>

-<uu,> 4 2 er (e Ry (7.69)

From the results of Chapter 3 we then obtain

P [ A LAY
Uy 'Tzl 11"’22] x

2,

* A
= '1‘2 Dixzo (7.70)

The dynamic system from player 2's point of view can now be

T
AP

F written from Equations (7.7) and (7.21) as (.71

- ) . .

g x F i_ - 6T, D, x
""" S S I S i SRR JAES WA N I

o $ mlTwl Hy iF - 6T D) PH W, CH, - PHW,T R[] X

“ [}

; G, - 6.T,'D,T 0 0

e - o I TR R w1 B B w= A

- = W,
G, - T, DT, P, 'V, PH, W,
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x(t ) =x
° (7.72)
X(e) = x
and with measurements
zz(t) = H,(t)x(t) +V2(t) (7.73)

The linear-Gaussian assumptions assure us that the optimal
estimates of x(t) and Q(t) given zz(t), vhich are denoted by Qz(t)

and Qzl(t) respectively, sre available from

. [} °
A . ' *
i D D B Z-‘fﬁ;.‘.’zi’ .............. %
-1, * - - A
§21 ru, W, "l iF- o1 D - v, e, - oW, R, %,
Fr o * -
G, = 6,7, DT, 0
+ u, + z
G. - G.T,'D,T ? m ! 2
| 2 1°1 "1%2 22
r T -1 A
P, Py B, 0 W, oll z, - BX,
+ (7.74)
0
L1’21 P,, 0 o0 0 0 |
with {nitial conditions
A -—
x,.(t )= x
270 ° (7.75)

A -—
- Xy (B = Xy
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r. . 1 r ' T
P,, P ' . *
. 11 ‘21 F : G,T, D,®
Pz = )| ccccccce=s -z -------------------------------------
. . -1 o * -1 -1
Pa P2 L’“lr". . F-GT, D@ w, ™, 'R, - PV TR,
p- o W p
1 Py P Py F '
[}
+] || e :
P.. P P., P rn'rt;'ln ;
l.21 22‘L21 22 1" M1
o o |
G6.T."D K (o 0 q
11 1 ¢
-------------------------------------- - +
* T. -1 T, -1 -1
F- 6T, D@ - PHW H - PH, W, H, 0 mﬁal H P
o ! -
- ﬂ p T -1 ar
Piy Py || B W By O] By By
- (7.76)
Pyy Py 0 Ol] P21 P22
_ - L - L -
with - -
P, O
Pz(to) = .77)
0 ()}
- .
The optimal control fot'plnyer 2 is thus
* * A
o
-
L'_.-'.
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vhile the corresponding optimal response of player 1 {s

* * A - * * A
Uy = '.l'l Dl x + Tl l)l'l'z'!'2 D.xz (7.79)
The Kalman-Bucy filtering equations (7.74) and (7.76) can again

be simplified by rewriting the conditional estimates, Equation (7.74)

as
'}2 - ¥, - 6,1,"D 8%, + G, - 61,0 Ty,
+p B e, - BR) k) = (7.80)
and

AL " el .
X731 ’Qn 6Ty D, ®#%;, + &, - 6,T\D;T,) vy

-1 A -1 A
+ Py B, G2y - B, + W, (2, - B)R))

T

'O-Pﬂ1 1

=1 A 1. A . A -z
n¥, - rnl'rwl BX, 5 X (t) =X, (7.81)

then since

%,(0 @ nl x | zz(z)l - 321 Iy !l!'x | zl(t)zz(t)‘ | zz(:)| (7.82)

we find that
Pz(t) - Pll(t) = pP(t) + PZI(t) (7.83)
thus
?ll(t) = P(t) + PZI(t) (7.84)
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Using Equation (7.84) we obtain from Equation (7.76)

* -1
i . P =T, -GT D &P, + ’11“11"1 0P+ ”21"r

- _ * T
- Paf 6t R N e S S R A

I -y ) - B TR By ) 0 (.85)

: -1 * -1
L | Py ™ mlt"l HPyy + PPy - GT) Dy #P,, - mf"l HP

-1 -1 T
- rnzrwz H,P,, ’21“11"1 HP + P,,F

T -1,
Py2 [’3171 ”1’] Pyt ¥, R

2“21"2 H,P
-1 -1 , i}
+ ml"wl HP - Py B, W, WP, P, (t,) = 0 (7.86)

which simplifies to

-1
Py, = PPy, - 6T, °1”zz +2 0 Tw WP+ P,

’I

Y T, -1y -1
’zzlcl"'l ”1’] - By W TR - By )W IR

1 -1 . L
R A A A% NI N R I X 1)

Then comparing Equation (7.85) with Equation (7.87) we observe that

e
]

has e ey N 4
L]

?21(t) - Pzz(t) (7.88)
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and ve can write for Equation (7.80) and (7.76)

; - * A *
x, = (F 6T, D, #)x, + (@, c_l'rl D,T,)u,
B + runz'rvz (&, - LX) ;3 Ry =% (7.89)
and
[ - * T * * T
Py = PPy + P F - GT D 8Py - By (6T, D) |
-1 .
- 211"21"2 BPy 5 Bye)) =B (7.90)

- T * * . T
P,y = ¥P,, + P,)F - GT, D,#P, - P (G,T, D, &)

-1 -1 _ -1
+ ’u"lr"l P,y - ’u“xr"x H Py, - ’21"11"1 5P,

-1 T, -1 -1
BAUR AL AR L A ’21“27‘2 L

+2, W, P, 5 B, (c) =0 (7.91)
If we define
R () o 8 (T,6)D) (IR, (£)D(E) @ (T,¢) (7.92)
vhere
*
, R12(®) = T,T)
then using
L ¢Ta .- oot
4 (7.93)
: . T T
' ® (T,e) - @ (T,0)F(t)
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we obtain after taking the derivative of Rl(t) with respect to t

: T T T T_,T
Ry =~ F @ DIRLZD. + & Dl. Gl(?1 ® DIRIZD.

T T_ T T T T
-& DI.GZGZ &D® + ¢ DIRIZD’GIGI & Do

T T,T T
-9 nlnuniczcz &D® -¢ °1R12°”’ (7.94)

Substituting Equation (7.92) and the defining Equations for S(t) and

Nl (t), 'ioea’

S(t) & & (T,t)D(t) & (T,t)

(7.95)
N, (t) & & (T,0)D, (1) & (T,t)
we obtain
R, = - R.P(t) - FL(t)R, + NG, (t)G, T(t)R, - N,G, (£)G.,T(t)S
1 1 1 171 1 1 172 2
+R, [G1 (:)cl"(c) - cz(c)cz'r(c) S ; R (D=0 (7.96)

Using Equations (7.95) and (7.96) in Equations (7.78), (7.86),
(7.87) and (7.89) the optimal delayed commitment strategy for player 2

is then given by the following set of equations,

u, () = 6,7 ()s(O)F, (©) (7.97)
(7.98)

S = - SF®) - F (95 +5 [6,(06,7 (1) - 6,06, ()] 8 : 8 =1
2,0 = [re) - 6,06, 0N, (6 +6, (06,7 ®5 () - 6, (36, T (0IR, @R, (0)

TS CLAICY PAORE NCOHAOY PR AORETA (7.99)
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i’u" F()P, -H’ul"r (t) -G (t)t:l'r(t:)!!1 ()8, - P, N, (£)G; (:)cl"(:)

- ruﬂzr(t)wz'l(c)nz(t)ru i Py (t) =P (7.100)

-]

.

T T
Pu - 1’(‘)’21*’21? () -c:l(:)c;l (t)Nl(t)Pn 21 1(:)0 (t)G (c)

PyyBy (‘W Leeyn, (e)py, - By, T@OW," NOLNGI
21“1 (e, (‘”‘1 ()P, + P21“1 Gl A Lerm, 0By,
- By 1T OW, OB ©F, ) - By BTN, (OB, ©F)
By H, (0, (DB, (R, 5 By (e ) =0 @7.101)

*

N, = - N F() - r"(:)u + N,G, (66, (:)u ;N (D) =1 (7.102)

R, = - RF() - FT(OR; + K6, (06,7 (R, = WG, (€3G, (18

+ R, l 6, (66,7 () - cz(c)cz"(c)l s ; R =0 (7.103)

The above solutions for player 2 are very similar to those
obtained for player 1 and are "simple® in that they can be directly
solved using forward and backward integration with a digital computer,

Recalling that Willman [ 8 } showed that for the class of games
discussed in this chapter,the strategies could only be realized with
infinite dimensional dynamic systems, we observe that the point of
view of delayed commitment strategies leads to solutions which are

readily computsble.
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CHAPTER 8

SUMMARY, CONCLUSIONS, AND

SUGGESTIONS FOR FUTURE WORK

In this dissertation the problem of prior and delayed commitment
strategies to differential games with noise corrupted state measure-
ments is discussed. It {s pointed ovt that the prior commitment

solution, which has led previous researchers to define the closure

I problem, {s valid ounly under reltrtctéd circumstances.

The delayed commitment solutions are then obtained for a differ-
entisl game where one player has perfect state infornation and the
other player has only noti? corrupted neauurencnﬁs of the state and {1»s
extended to a differential game where both players have noise corrupted
measurements in Chapter 7. Ia both cases, the resulting secure
strategies do again satisfy the familiar Separation Theorem of

stochastic optimal control,

Of particular significance is the fact that the governing

equations do not result in an often difficult to solve non-linear two-

Tale
O

point boundery value problem, but are readily computable with a digital

computer,

A detailed example of a pursuit-evasion geme {s presented in

Chapter 6. It discusses u.-tontlo and an airplane system vhere the

-’
I

mi{ssi{le (or player 1) has perfect state measurements and the airplane
— (or player 2) has noise corrupted measurements. Both the prior commit-

ment and delayed commitment soluti{ons have been obtained and the results

compared,
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An immediate and direct extension of the research presented in
this dissertation {s to extend the results to differential games, where
in addition to noise corrupting the measurements, additive white
Caussian noise, independent of the measurement noise and of the initial
estimate of the state, is present {n the system dynamics. Of course,
1f the noises are not white but Markov with rational spectra, they can
be modelled as outputs of a dynamic system which is driven by white
noise and by adjoining this dynamic model to the system equations an
augmented system is obtained with white noise disturbances.

From the game theoretic point of view the realizstion that the
zero-sum assumption has to be abandoned during the actual stochastic
game offers several interesting analytic and conceptusl concepts not
found in gero-sum different{al games., We have used the minimax
solution concept, however, non-inferior (or Pareto optimal) strategies
or solution concepts involving coalitions, bargaining, etc., can be

envisioned.

146




‘‘‘‘‘‘

2.

3.

9.

10.

11.

12,

13.

REFERENCES

von Neumsnn, John, snd O. Morgenstern. Theory of Games and
Economic Behavior, Princeton University Press, Princeton,
New Jersey, 1943,

Issacs, R. P. '"Different{al Games - I: Introduction,” RAND
Corporation, Research Memorandum, RM-1391, November 1954.

Isaacs, i. P. "Differential Games - II: The Definition and
Formulation,’ RAND Corporation, Research Memorandum, RM-1399,
November 1954.

Isaacs, R. P. "Differentisl Games - III: The Basic Principles
of the Solution Process,'" RAND Corporation, Research
Memorandum, RM-1411, December 1954.

Isascs, R. P. "Differential Games - IV: Mainly Examples,"”
RAND Corporation, Research Memorandum, RM 1468, March 1955.

Isaacs, Rufus P. Differential Gawes, J. Wiley e#nd Sons, Inc.,
New York, 1965. '

Aunnnn,tk. J. and M. Maschler. "Some Thoughts on the Minimax

Principle,” Msnagement Science, Vol. 18, No. 5, Part 2,
PP. 54-63, January 1972.

Willman, W. W. "Formsl Solutions for a Class of Stochastic
Pursuit-Evasion Games," IEEE Trans. on Autometic Control,
Vol. AC-14, No. 5, pp. 504-509, October 1969.

Behn, R. D., and Y. C. Ho. "On a Class of Linear Stochastic
Differential Games," IEEE Trans. on Automatic Control,
Vol. AC-13, No. 3, pp. 227-240, June 1968.

Rhodes, 1. B., and D. G. Luenberger. "Differentiasl Games
wvith Imperfect State Information,” IEEE Trans., on Automstic

Kuhn, H. W. "Extensive Games," Proc. Nat. Acad. Sci., Vol. 36,
pp. 570-576, October 1950.

luce, Robert D. and H. Raiffa. Games and Decisions, J. Wiley
and Sons, Inc., New York, 1957.

Stary, A. W. '"Nonzero-Sum Differential Games: Concepts and
Models," Harvard University, Division of Engineering and
Applied Physics, Technical Report No. 590, June 1969.

147




14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

Ho, Y. C., A. E. Bryson, and §. Baron. "Differential Games
and Optimsl Pursuit-Evesion Strategies,” IEEE Trans. on
Automatic Control, Vol. AC-10, pp. 385-389, October 1965.

Berkovitz, L. D. "Variational Approach to Differential Games,"
Advances in Game Theory. (Annsls of Mathematics Studies, 52),
Princeton University Press, Princeton, New Jersey, 1964,

pp. 127-174.

Porter, W. A. "On Function Space Pursuit-Evasion Games,"
SIAM J. Control, Vol. 5, No. 4, pp. 555-574, April 1967.

Rhodes, I. B., and D. G. Luenberger. "Stochastic Differential
Games with Constrained State Estimators,” IEEE Trans. on
Automatic Control, Vol. AC-14, No. 5, pp. 476-481, October 1969.

Harsanyi, J. C. "“Games with. Incomplete Information Played by
Bayesian Players - Part I, The Basic Model," Management Science,
Vol. 14, No. 3, pp. 159-182, November 1967.

Harsanyi, J. C. "Gsmes with Incowplete Informstion Played by
Bayesian Players - Part 1I, Bayesian Equilibrium Points,”
Mansgewent Science, Vol. 14, No. 5, pp. 320-334, Jsnuary 1968.

Harsanyi, J. C. “Games with Incomplete Inforwation Played by
Bayesian Players - Part I1I, The Basic Probability Distribution
of the Gawme," Mansgement Science, Vol. 14, No. 7, pp. 486-502,

Ho, Y. €. "On the Minimax Principle and Zero Sum Stochastic
Differential Games," Proceedings of the 1972 IREE Coni. on
Decision and Control sand 11th Symposium on Adaptive Processes,
New Orleans, Louisiana, December 1972, IEEE, New York, 1972,
Pp. 333-339,

Peterson, Bdwin L. Statistical Analysis and Optiwmization of
Systems, J. Wiley and Sons, Inc., New York, 1961.

Bryson, Jr., Arthur E. and Y. C. Ho. Applied Optimal Control,
Ginn and Co., Waltham, Massachusetts, 1969.

Kushner, Harold J. Introduction to Stochastic Control, Holt,
Rinehart snd Winston, Inc., New York, 1971,

148

---------




APPENDIX A

~COMPUTER PROGRAM LISTING FOR THE NUMERICAL EXAMPLE OF SECTION 6.4 |

- QUASILINIAR]ZATION ITERATION 1} 1

SUBROUTINE FUNEV
COMMON TIMEDELT(NSTART NFIRST(NEX]IT,IPASS,ROMCON(2094)
. REAL K] oK2+KT14KT24NyND
REAL NOJNPLIDyNP] JNH1DJNH]
DATA TFoASoKT) oKT2¢TAUL ¢ TAUZsR11SsR225710,¢e04932:2932.2¢1002¢9.00 :
11¢.004/ ‘
IF (NSTART) 30450410 \
: 10 READ(5420)NP] ¢PP] ¢ W29NH]1 4PH]
I 20 FORMAT (4E20.0)
CALL INTG(NPIDWNPI) , {
N CALL INYG(PP1D+PPI) '
CALL INTG(NHID+NHY)
CALL INTG(PH1D.PH1)

- caLl PRINT(10H S(T)el0H4Gl2.0 2Sele0,)
S CALL PRINT(10H NPIDe10HG12.4 oNP1D¢3+0.)
- CALL PRINT(10H NP1 +10HsGl2.4 oNPlole04)
o CALL PRINT(10H PP1Ds10HeGl2.4 +PP1De340,)
- CALL PRINT(10H PPl +10HsGl2.4 *PPlele0.)
- CALL PHRINT(10H NHIDe10HeGl2.4 sNH1De 30 0.)
CALL PRINT(10M NH1 910MHe0Gl2.4 eNH] 0100.)
CALL PRINT({1ION PHIDs10HeGl2.4 +PH1IDeIN0,)
CALL PRINT(10H PH1 +10H4Gl2.4 2sPHle140,)
30 CALL PRINT(10M KI(T)s10MHeGl2.4 +K1+540,.)
CALL PRINT(1OM K2{T)elOHe0Gl2.4 +K2+540,.)

RETURN
50 T60=TF=-TIME

T1=]1e=EXP(=-TGO/TAUL)=TGO/TAU)

7221 . =EXP (=TGO/TAU2)~TGO/TAU2
S=6,%R115%R22S/(6."R11ISPR2P2S+ASHKT]I#220R22C4 (5, *TAUL##22TG0-6,*TAU
1187600822, 87G0%%3+3,8TAU)#230() ,=FXP(=2.*TGO/TAUL))=12.%TAU]L®#s2¢T
200%F XP(=TGO/TAUL) ) ~ASEKT2#424R] | S* (6, #TAUZS*#220TG0=6,*TAUZ*TGOR#2+2
3.0TGO#23¢3,8TAU28830 (] . =EXP(=2,4TGN/TAU2) )1 ~]12.2TAU2224TGO®EXP(-TG
«0/TAU2) ) )

Kl=ASexKT]ea2aTAlIlon2eT)a82/R]1S

K2=AQUKT20#2aTA|120020T2082/R22S

PO=)000."EXP(~.5*TIME)

NO=~,000000015
NPlDSZo'(Kl'N00K1'90POIﬂZ).NPI‘2-'“0’991/N2°KI’NO.N0°?o.N0'POIH20K

’ 12#SeS

PPID2=2,0K]1%P(eNP]~ Co'|K1'N°0Kl’5’90/32).P°l‘PO’PO/UZ‘Z.'K"NO'PO
NHINZ2,% (K12N0+K1#SePO/W2) ®NH] ¢ 2, #NO*PH] /W2
PHIN==2.¢K]1*P0#NH1 =2, 2 (K1®NNDeK]1#SeP0/W2) *PH]

IF(NFIRST)6Ne80060 .

om 9 -+ YR

3
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60 Al==NP1/NH]
WRITE(6+TOINPL+PPLoW2A)

70 FORMAT(1HOs4Xo4HN = Gl4o6eSXeaHP = (l4,6¢5XSHW2 = Glé,6,5HA]

;: 13622.16)

i RO RETURN

‘ END

X - ITERATION 2

SUBROUTINE FUNEV

COMMON TIME+DELTANSTARToNFIRSTONEXIT,IPASS,ROMCON(2094)

REAL X)oK2eKT1oKT2oNoND

REAL NO NPl «NPINGNH] yNHID NP2« NP2D «NH2 yNH2D

DATA TFoASoKT1 oKT2sTAUL 9 TAUZsRI1SeR225/71009004032.2¢322¢)10¢244.00

-

«0/TAU2)))
K1=ASOKTl®e2eTAY]#e2eT]0a2/R]]S
K2=zASOKT20020TA(J20020T2082/R22S
NO=-,000000015

ll ’ .00‘0/
IF (NSTART) 30450410
10 READ(Se20)NPL PPl oW2sNP2sPP2¢NH2 +PH2
20 FORMAT (4E20.0)

CALL INTG(NP]IDWNP])

CALL INTG(PP]DsPP])

CALL INTG(NP2DJNP?2)

CALL INTG(PP2DPP2)

CALL INTG(NHZ2DeNH2)

CALL INTG(PH2DPH2)

CALL PRINT(1OH S(T)e10HeGl2.4 0S9140.)

CALL PRINT(10H NP1D»10HsGl2.4 oNP1De3s0.)

CALL PRINT(10H NP1 +10HeGl2.4 sNPlel+0,)

CALL PRINT(]IOH PP1D910HsGl2,.4 oPPIDe3e0.)

CALL PRINT(10H PPl +10HeGl2.4 oPPls1+0,)

CALL PRINT(10M NP2Ds10HsGl2.4 oNP2D4340.)

CALL PRINT(10MH NP2 510HeGl2.4 oNP24s140,)

CALL PRINT(10OH PP2Ds10HsG12.4 oPP2D¢340.)

CALL PRINT(10H PP2 +10HeGl2.6 2PP2e¢140,)

CALL PRINT(10H NH2Ds 10HeG12.4 oNH2D¢3+¢0,)
- CALL PRINT(10H NH2 910HeGl2.4 oNH24140.)
& CALL PRINT(10H PH2De10H¢Gl2.4 oPH2D¢340.)
é CALL PRINT(10H PHZ +10HeGl2.4 oPH29100,)
9 30 CALL PRINT(10H KI(T)elOMHeGl2e4 2K1¢540,)
G CALL PRINT(10H K2(T)e10Hs012.4 eK2+540,)
= RETURN
: 50 TG0=TF=-TIME
® TIz),=EXP(=TGN/TAUL) =TGO/TAUI
= T2=1.~EXP(=TGO/TAU2) =TGO/TAU2
= S=6.*R) 1SOR22S57 (6, *R11SeR225+ASeKT 1 2024R22S# (6. 2TAUL*82eTGN=-6,TAU
K 1197G0802¢2,2TG0003¢3,0TAUL®030 (] .=FXP(=2.2TGO/TAUL))=12.,2TAUl®a2eT
ﬁ 2GO0*FXP (=TG0/TAU)L) ) =ASEKT20828R] 1S (5 ,2TAUZ2#028TG0~6,2TAY2*TGORe2+2
& 3.,°TG0%93¢3,2TAU2® 230 (] ,=EXP(=2:,2TGO/TAU2) ) =12.%TAUL#®2eTGO*LXP(~-T0
Y~
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i

Al
-

P0=1000.®EXP (=.5*TIME)
NP1D=2.#(K1¥NO*K1#S+PO/W2)ENP142.2N0*PP]/W2~-K]1#NOSNO~2,*NO*PO/W2+¢K
12#SeS
w PPIlD==2.#K1*P0ENP]1 =2, 8 (K18NO+K1#S+PO/W2) *PP1+PO*PO/W2+2.2K]1#NO*PO
3 NP2D=2.# (K1 ®NP) +K] #S5¢PP]/W2) #NP2+2,.*NP]1 #PP2/W2-K1 NP1 #NP] =2, #NP] #P
i 1P1/W2+K2959S
PP20==2,8K1#PP1aNP2=2,# (K]1#NP]1+K]1#S+PPl/W2) #PP2+PP)8PP1/W2¢2,%K]1 8N
1P1#PP]
NH2D=2.# (K1#NP1+K1#SePP1/W2) *NH2+2, #NP ] #PH2 /W2
PH2D==2,8K1#PP1aNH2=2.4 (K18NP 1 +K18S5¢PP]) /W2) $PH2
IF(NFIRST)60,80.60
60 A2=~-NP2/NH2 '
WRITE(6+TOINPL PPl W2 A2
T0 FORMAT (1HO s4X &N T Gle,6+SXe4HP =
13622.10)
80 RETURN

;i END
.

= JITERATION 3

Gl4,6+SX9SHWZ = Gl4,6.5HA2

SUBROUTINE FUNEV

COMMON TIMEJDELToNSTARTNFIRSTINEXIT o IPASS,ROMCON(2094)

REAL Kl oK2sKT1oKT29NeND

REAL NOONPIONPIDON“IONHIDONPZONPZDQNHZONHZD

REAL NP3+NH3I«NPIDeNH3ID

DATA TFoASIKTLoKT2+eTAUL e TAU29R11SeR225/1000006932:2032020¢1400¢244+400
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11¢.004/
IF (NSTART) 30450410
10 READ(S+20)NP) PPl oeW2sNP2IPP2¢NPIPPIJNHIHPHI
20 FORMAT (4€20.0)
CALL INTG(NP1DNP])
2 CALL INTG(PP1D+PP])
- CALL INTG(INP2DINP2)
- CALL INTG(PP20.PP2)
- CALL INTG(INP3IDINP3)
Ea CALL INTG(PP3D.PPI)
o CALL INTG(NH3DeNM3)
= CALL INTG(PH30+PH3)
- CALL PRINT(10M S(T)elO0HeGl2.4 eSele0,)
Eﬁ CALL PRINT(10M NP1Ds10H+Gl2.6 +NP1D¢340,)
v CaLL PRINT(1IOM NP1 +10M¢G12.4 oNPlele0.)
- CALL PRINT(10H PP10e10MG12, 4 vPP1De340.)
b CALL PRINT(1ON PP1 +10HGl2.4 'PPlels0,)
- CALL PRINTI(IOH NP2D¢10HeGl2.4 oNP2D43+40.)
o CALL PRINTY(10H NP2 ¢10M¢Gl2.4 oNP291+0,)
. CALL PRINT()ONH PP2D¢10HeGl24% WPP2D+3+0,)
- CALL PRINT(10M PP2 +10HGL2 4 oPP2s1+04)
o CALL PRINT(1OH NP3Ds10HeGl2.4 aNPIDe3e0,)
] CALL PRINT(10M NP3 »10HsG12.4 oNP3¢1+0,.)
CALL PRINT(IOH PPID 104612, 4 oPP3ID 340,
CALL PRINT(1OM PP3 +10H012.4 oPP3Is140,)




CALL PRIKN L]I0H NH3IDe10H,Gl2.4 oNH3ID9340,)
CALL PRINT(10H NH3 +10HeG12.% oNH3+1,0,)
CALL PRINT(10H PH3ID»10HG12.4 oPHID$340,)
. CALL PRINT(10M PH3 410H4Gl2.4 oPH34140.)
! 30 CALL PRINT(10M K1(T)sl0HGl2.4 oKT19540,)
Ny CALL PRINT(10H K2(T)e10HGl2.4 2KT2:+54+0,)
RETURN

S0 TGO=TF=-TIME
T1=2]1.-EXP(=-TGO/TAU1)=TGO/TAU]
) T2=].~EXP(=TGO/TAU2) ~TGO/TAU2
. . S26,*R11S2R22S/ (6. *R11S*R22S+AS*KT ] #828R225# (6, #TAUL##820TG0~6,4TAU
: 1127600022 ,#TG08#343,0TAU] #4308 (] . ~EXP(=2.%TGO/TAUL) ) =12.2#TAUl#s20T
2GO0*EXP (=TGO/TAUL) ) ~ASOKT2##28R]) 1 S* (6, 2#TAU2##22TG0~6.2TAU2#TGO®#242

3,8TG0003¢3 ,aTAY29230 (] ,~EXP (=2,2TOD/TAU2))=12,2TAU2##28TGO*EXP (-TG
40/TAU2)))
T K1=ASeKT1ee2aTA]lea2aT282/R]11S
! K2=ASRKT2#820TA2##20T2002/R22S
g NO0==-,000000015
; PO0=1000.EXP(=oS*TIME)
o NP1D=2.,#(K12NO+*K1#SePO/W2) ®NP]1+2.2NO®*PP)/W2-K1#NO®*NO=2,*NO*P0/W2+K
o 12eSesS
PPID==2.2K1#P0ONP1 =2, ®# (K1#NO¢K]1#SeP0/W2) *PP]¢PO*PO/W2+2.*K]1*NO*P0
NP2D=2.% (K18NP1+K]1#S+PP1/W2) #NP2*2,%NP ] #PP2/W2~-K18NP] #NP] -2, 8NP ] #P
1P1/7W2+K2#SeS
PP2D==2 4K ] #PP #NP2=2, 8 (K1 #NP1+K]1#S+DP])/W2) #PP2+PP#PP1/W2+2.#K]1®*N
1P1#PP] '
NP3D=2,% (K1 4NP2+K1#S+PP2/W2) #NPI+2,8NP28PP3I/W2=K] *NP2ENP2~2,*NP2#P
1P2/7W2eK205eS
PPID==2, 8K 14PP2ENP3I=2 .8 (K] *NP2+ K1 #SePP2/uW2) #PPI+PP2ePP2/W2+2,.#K]1 8N
1P2e*pPP2
NH3DZ2.# (K1 #NP2+K1#S5+PP2/W2) ENH3I 2, ENP22PHI/W2
PHID==2. 8K ] *PP2ENHI=2 . # (K1 8NP2+K]1€S+PP2/W2) *PHI
IF(NFIRST)60.80060
50 A3==NP3I/NH3 '
WRITE(6+sTOINP] +NP2oswW2eA3
70 FORMAT (1HO94Xe4HN £ GleoebeSXeeHP = Gl4.695Xe5HW2 = Glé.645HA]
1=2622.14)
80 RETURN
END
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SUBROUTINE FUNEYV

) COMMON TIME+OELTNSTART NFIRSToNEXTIT, IPASSIROMCON(2094)
N REAL K1eK2eKT1eKT24NoND
| . REAL NONP) oNPIDoNHL +NHID NP2« NP20 « NH2 ¢ NH2D
= REAL NP3«NHI«NP3DeNH3ID
REAL NP4 +NHG s NPGD o« NHGD
y DATA TFoASoKTLoKT2eTAUL e TAU2sR11SeR225/10460004932:2032020014024+.00
N ‘ 1104004/
N 1F INSTART) 30950410
{
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10 READ(S+20)NPLl PPl sW2esNP2sPP29yNPIsPPIsNP& +sPP& ¢ NHG ¢ PHG
20 FORMAT («E20.0)

CALL INTG(NPLDsNP])

CALL INTG(PP1D,.PP1)

CALL INTG(NP2D+NP2)

CALL INTG(PP2DPP2)

CALL INTG{(NP3D,NP3)

CALL INTG(PP3ID,PPI)

CALL INTG(NP4DINP4)
CALL INTG(PP4D+PPG)

. CALL INTG(PH4D,PHG)
CALL INTG(NH4DyNHG)
CALL PRINT(10H S(T)+10HG1l2.4 ¢Ss1+0.)
CALL PRINT(10H NP1Ds10HeG12.4 sNPID¢Isy0.)
CALL PRINT(10H NP1 +]10Hy612.4 sNPlele0,)
CALL PRINT (10H PP1De10HGl244 sPP1D+340,)
CALL PRINT(10H PPl +10H.Gl2.4 sPPlsls0,)
CALL PRINT(10H NP2Ds10HsGl2.4 sNP2Ds340.)
CALL PRINT(10H NP2 +10H+Gl2.4 *NP2+14+0,)
CALL PRINT(IOH PP2De10Hy 61244 oPP2De3¢0,)
CALL PRINT(10H PP2 +10HGl2.4 PP2+140,)
CALL PRINT(10H NP3Dy10H+G1l2.4 sNP3D340.)
CALL PRINT(10H NP3 9]10HGl2.4 sNP3+91+0,)
CALL PRINT(10H PP3De10HeGl2e 4 sPP3De3¢0,)
CALL PRINT(10H PP3 +10H.G12.4 sPP3+140,)
CALL PRINT(10H NP4Dys10HsGl2.4 oNP4De3+0,)
CALL PRINT(10H NP4 +]10HsGl2e4 sNPGel+0,)
CALL PRINTI(10H PP4Des10H+G12.4 sPP4D43490,.)
CALL PRINT(10M PP4L +10K+G12.4 yPPGy190,)
CALL PRINT(1lOM NH4D9 10H9Gl2.4 sNHGD340.)
CALL PRINT(10H NHG 910HeGl2e4 oNHGe1+0,)
CALL PRINT(10H PH4Ds 1 0HeGl2.4 oPHLD3+0,)
CALL PRINT(10H PHL +]10HsGl2.4 oPHGe140,)

30 CALL PRINT(]OH K1(T)sl0Hs012.4 oKT19540,)

CALL PRINT(10H K2(T)910H«Gl2.4 sKT2¢540,)

RETURN
30 T6N=TF=TIME

T1=1e=EXP(=TGO/TAUL1)=TGO/TAU]L

121 .~EXP (=TGO/TAU?)=TGO/TAUZ

SSO.*R)I1ISHR72S/ (6, *R)1S#R22S+ASHKT ) #u20R2250(6,%TAU]l#82eTGN-6,4TAU
11076008242 ,0T7G080343,8TAUL ¢330 (] ,=EXO(=2,#TGO/TAUL) ) =12,2TAU) ee2aY
CONSF AP (=TGO/TAUL) ) =ASEKT2002eR] |5 (~,*TAU2#2#22T00~6.*TALI2*TGORR2e2
Je®TRORE I3 #TAUP®#30 (] ,=EXP(=2.2#TGN/TAUR) ) =12.2TAU2*82*TGN*EXP (=T
“NH/TAU2)))

Kl=ASeKTiee2eTAll0apaT]ee2/Q]]S

K2=ASEKT20082aTAUZ220208TR2682/R228

. NO==,009000015

POZI0V0.*EXP(=.S5*TIME)

NPLOZ2,# (K1ONOeK1®SePO/W2) *NP1¢2,*NOSPPL/W2-K18NOOND=2?,*NO*PO/W2¢K
12eSes
PPLOZ=2,8K1%P0ONP =2, (K1ONO+K]18S+P0/W2) *PPLl+PO*PO/W2+2,%K] *NO*P0
NP2N=Z2,8 (K1 *NP1+K]1#SePP/W2) eNP2+ 2, #NP | 8PP2/W2-K ] *NPL 8NP ] =2, *NP] #P
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1P1/7w2eK2%SeS
PP2D==2,2K1#PP#NP2~2,8 (K]18NP]+K]18SePP]/W2) #PP2+PP1oPP)/W2¢2,8K]1®N
1P1#pPP]
NP3DN=2,% (K] *NP2+K1#S+PP2/W2) #NP3+2,8NP28PP3I/W2=K] *NP2#NP2=-2 ,#NP2#P
1P2/W2eK20S58S
PP3D=-2.#K1#PP28NP3~2,# (K1 #NP2+K18SePP2/W2) sPP3¢PP28PP2/W2+2.9K] &N
1P2ePP2
NP4D=2,# (K1 #NP3+K1#S+PP3/W2) 8NP4+2, #NPI#PP4L/W2~K] #NP3I#NP3=2, #NP3#P
1P3/W2+K28S0S
‘ PP“D=;2o’KI'PP3.NP4-Z.'(K12NE}0Kl’SOPP3/U2)'PP409P3’PP3/U20200K1’N
» 1P3#pPpP .
NH4D=2.* (K1 #NP3+K]1#S+PP3/W2) #*NH4+2,#NP3I*PHL/W2
PH4D==2 , # K1 #PPIWNHG =2, # (K1 *NPI+K]1#S+PPI/W2) *PHG
. IF(INFIRST)I60+980,60
60 A4==NP4&/NHG
WRITE(6+TOINPLINP2sW2oAG
70 FORMAT(LIHO94Xs4HN = Gl4eBeSXeGHP = Gle,6,SXsSHWZ = Gl4,6+5HAG
1=622.14)
80 RETURN
END

.,..! - FINAL SOLUTION
<

SUBROUTINE FUNEV
COMMON TIMEsDELToNSTARTINFIRSToNEXITo IPASSsROMCON(2094)

REAL Kl oeXK2eKTL1oeKT2eNoND

REAL NOWNPLoNPIDoNH]L osNH1D ¢ NP2 o NP2D s NH2 s NH2D

REAL NP3¢NH3IsNPIDeNH3D

REAL NP4 ¢ NH4 ¢ NP4D o NHGD

REAL ND2eND21+J19J1D+J29J2D9sJRLeJR29JR11eJR129JR2]+JR22+NND2
DATA TFosASoKT) oKT29TAUL+TAUZ24R]I1SIR?225/710,09¢04032:02032:20¢16¢0244.00
119.00‘0/

IF (NSTART)I30+50,10

10 READ(5+20)NP1sPP]loW2eNP2sPP2:NPIsPPI NP4 4PP4 P2
20 FORMAT (4E20,.,0)

CALL INTG(NPIDeNP])

CALL INTG(PPID,.PP1)

CALL INTG(NP2DsNP2)

CALL INTG(PP2D,PP2)

CALL INTG(NP3D+NP3)

CALL INTG(PP3D.PP])

CALL INTG(NP4DINPG)

CALL INTG(PP4DPPG)

CALL INTG(P2D+P?2)

CALL INTG(JIDsJY)

Ei . CALL INTG(J204J2)
—r CALL PRINT(10H S(T)e10HeG12.4 eSele0,)
- CALL PRINT(10H NP1De10HeGl2.4 oNP1D¢3¢0.)
CALL PRINT(1O0H NP1 210HeGl2.% oNPlele0,)
CALL PRINT(1OM PP10+10H.Gl2.4 oPP1De3¢0,)
CALL PRINT(ION PPl o10MeG12.4 oPPlole0.)
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30

CALL
CALL
CALL
CALL
CAaLL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
caLL
CAaLL
CAL:L

PRINT(10H
PRINT(10H
PRINT (10H
PRINT(10H
PRINT(10H
PRINT (10H
PRINT(10H
PRINT(10H
PRINT(10H
PRINT (10H
PRINT (10H
PRINT(10H
PRINT(10H
PRINT(10H
PRINT(10H
PRINT (10H
PRINT (1 0H
PRINT (10M
PRINT (10H
PRINT (10H
PRINT (10H
PRINT(10M
PRINT(10H
PRINT(10H
PRINT(10H
PRINT (10H
PRINT(10H
PRINT(10H
PRINT (10H
PRINT (10H
PRINT (10MH
PRINT (10H
CALL PRINT(10H
CALL PRINT(10H
A=SQRT (AS)
R11=SORT(R]11S)
R22=SQRT (R22S)
I=]

RETURN
T60=TF=-TIME

NP2D+10HsG12.4
NPZ 'lOHOGlao‘O
PP2D+10HG12.4
PP2 910H4G12.4
NP3Ds10HeGl2.4
NP3 »10HsGl2.4
PPID10MH,Gl2.4
PP3 +10HeGl2.4
NP4D9 1 0HeG12.4
NP4 910H.Gl2.4
PPUDs10HG1 24
PP4 +10H¢Gl2.4
ND2 910Hy612.4
ND21+10MH:Gl2.4
NND2+10H4G12.,4
G1S +10H,612.4
G2S 210H.Gl2.4
GIN2+10H,0612.4
GIN1+10H,G12.%
GIN »10H4Gl2.4
P2D »210HGl2.4
P2 +10H,Gl2.4
JID ¢10H+Gl2.4
J1 910HeGl2.4
J2D ¢10H4G12.4
JZ ’lOH'GlZQQ
JR11910MHGl2e%
JR12410HsGl2.4
JR21+10H4G) 2.4
JR22+10HGl2.4
JR1 +10HeG12.06
JR2 910MHeGl2.0
Kl1(T)elOHeGl2.4

K2(T)el0HsGl2.4

T121.-EXP(=TGO/TAUL)=TGO/TAUI
T2=21.=EXP(=TGO/TAU2) =TGO/TAU2

S=0.*RI1SPR22S/ (6. PRI 1S®*R22S*ASHKT1#820R22G# (6,2 TAUL®*#20TGN=-6,2TAU
110T60002¢2,2T002#3¢3,8TAYL#830(].=FAP(=2.*TG0/TAUL))=12.2TAUl®w2ey
2GO®EXP (=TG0/TAUL) ) =ASEXKT2#028R]1S* (6,2 TAU2*#20TG0=6.,*TAU2*#TGO® 8242
3.0TGO®23e3,0TAU29030 (1 ,=EXP (=2.2TGN/TAU2) ) =12.#TAU2*#24TGO*EXP (=TG

©0/TAU2)))

K1zASeKT]en2eTAY)en2eT]ea2/R]1S
K2=ASAKT20020TAU2RR20T2002/R22S

ND226,2R]1 1S/ (6. 9R]1S+ASOKT1 2820 (6,9TAUL8020TG0=06,2TAULSTG0®®2+2,0T
160003¢3,0TAUL®@30 (] ,=EXP(=2.#TGO/TAUL))=12:.#TAUL®820TGO®EXP (~TGN/T

2Avul)))
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eNP2D+340.)
oNP291+0,.)
2PP2D93+0.)
+PP2e1+0,)
oNPID360,)
sNP3e1+0,)
oPP3Ds3+0.)
2PP3414+0.)
sNP4De3+0.)
oNPGLy1,0,.)
sPP4D4340,)
2PP&4s]+0,)
sND2+s1+0,)
oND21+s140,)
oNND2,41+0.)
2G1Ss140.)
262Ss1+0,)

9GIN2,140,)

9GIN1,41,0.)
9GINs1490,)
oP2D¢340,)
OPZOIOOQ)
*J1De3+0,)
*Jlele0,)
2J2De390.)
9J1els0,)
+JR114140,)
+JR12¢1240.)
2JR214140,)
9 JR224140,)
*JR1e1+0.)
2 JR29140,)
1K1e5.:0,)
WK2+540,)







